Spaces:
Paused
Paused
dev/check-gpu-for-rinna (#10)
Browse files- unavailable rinnna at no GPU (77ef434fe49c5896ce25aba5f08422384004d16d)
app.py
CHANGED
|
@@ -25,14 +25,17 @@ E5_EMBEDDINGS = HuggingFaceEmbeddings(
|
|
| 25 |
encode_kwargs=E5_ENCODE_KWARGS,
|
| 26 |
)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
def _get_config_and_embeddings(collection_name: str | None) -> tuple:
|
|
@@ -48,14 +51,17 @@ def _get_config_and_embeddings(collection_name: str | None) -> tuple:
|
|
| 48 |
|
| 49 |
|
| 50 |
def _get_rinna_llm(temperature: float):
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
return llm
|
| 60 |
|
| 61 |
|
|
@@ -64,7 +70,7 @@ def _get_llm_model(
|
|
| 64 |
temperature: float,
|
| 65 |
):
|
| 66 |
if model_name is None:
|
| 67 |
-
model = "
|
| 68 |
elif model_name == "rinna":
|
| 69 |
model = "rinna"
|
| 70 |
elif model_name == "GPT-3.5":
|
|
@@ -157,12 +163,17 @@ def main(
|
|
| 157 |
return result["result"], html
|
| 158 |
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
nvdajp_book_qa = gr.Interface(
|
| 161 |
fn=main,
|
| 162 |
inputs=[
|
| 163 |
gr.Textbox(label="query"),
|
| 164 |
gr.Radio(["E5", "OpenAI"], label="Embedding", info="選択なしで「E5」を使用"),
|
| 165 |
-
gr.Radio(
|
| 166 |
gr.Radio(
|
| 167 |
["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"],
|
| 168 |
label="絞り込み",
|
|
|
|
| 25 |
encode_kwargs=E5_ENCODE_KWARGS,
|
| 26 |
)
|
| 27 |
|
| 28 |
+
if torch.cuda.is_available():
|
| 29 |
+
RINNA_MODEL_NAME = "rinna/bilingual-gpt-neox-4b-instruction-ppo"
|
| 30 |
+
RINNA_TOKENIZER = AutoTokenizer.from_pretrained(RINNA_MODEL_NAME, use_fast=False)
|
| 31 |
+
RINNA_MODEL = AutoModelForCausalLM.from_pretrained(
|
| 32 |
+
RINNA_MODEL_NAME,
|
| 33 |
+
load_in_8bit=True,
|
| 34 |
+
torch_dtype=torch.float16,
|
| 35 |
+
device_map="auto",
|
| 36 |
+
)
|
| 37 |
+
else:
|
| 38 |
+
RINNA_MODEL = None
|
| 39 |
|
| 40 |
|
| 41 |
def _get_config_and_embeddings(collection_name: str | None) -> tuple:
|
|
|
|
| 51 |
|
| 52 |
|
| 53 |
def _get_rinna_llm(temperature: float):
|
| 54 |
+
if RINNA_MODEL is not None:
|
| 55 |
+
pipe = pipeline(
|
| 56 |
+
"text-generation",
|
| 57 |
+
model=RINNA_MODEL,
|
| 58 |
+
tokenizer=RINNA_TOKENIZER,
|
| 59 |
+
max_new_tokens=1024,
|
| 60 |
+
temperature=temperature,
|
| 61 |
+
)
|
| 62 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 63 |
+
else:
|
| 64 |
+
llm = None
|
| 65 |
return llm
|
| 66 |
|
| 67 |
|
|
|
|
| 70 |
temperature: float,
|
| 71 |
):
|
| 72 |
if model_name is None:
|
| 73 |
+
model = "gpt-3.5-turbo"
|
| 74 |
elif model_name == "rinna":
|
| 75 |
model = "rinna"
|
| 76 |
elif model_name == "GPT-3.5":
|
|
|
|
| 163 |
return result["result"], html
|
| 164 |
|
| 165 |
|
| 166 |
+
AVAILABLE_LLMS = ["GPT-3.5", "GPT-4"]
|
| 167 |
+
|
| 168 |
+
if RINNA_MODEL is not None:
|
| 169 |
+
AVAILABLE_LLMS.append("rinna")
|
| 170 |
+
|
| 171 |
nvdajp_book_qa = gr.Interface(
|
| 172 |
fn=main,
|
| 173 |
inputs=[
|
| 174 |
gr.Textbox(label="query"),
|
| 175 |
gr.Radio(["E5", "OpenAI"], label="Embedding", info="選択なしで「E5」を使用"),
|
| 176 |
+
gr.Radio(AVAILABLE_LLMS, label="Model", info="選択なしで「GPT-3.5」を使用"),
|
| 177 |
gr.Radio(
|
| 178 |
["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"],
|
| 179 |
label="絞り込み",
|