Spaces:
Sleeping
Sleeping
| import os | |
| import re | |
| import json | |
| import subprocess | |
| import glob | |
| from pathlib import Path | |
| from concurrent.futures import ProcessPoolExecutor | |
| from langchain_community.document_loaders import UnstructuredMarkdownLoader | |
| from langchain.schema import Document | |
| import shutil | |
| import tempfile | |
| from .path_utils import get_path | |
| class DocumentLoading: | |
| def convert_pdf_to_md(self, pdf_file, output_dir="output", method="auto"): | |
| base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
| target_dir = os.path.join(output_dir, base_name) | |
| md_file_path = os.path.join(target_dir, method, f"{base_name}.md") | |
| print("The md file path is: ", md_file_path) | |
| if os.path.exists(md_file_path): | |
| print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True) | |
| return | |
| command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] | |
| try: | |
| subprocess.run(command, check=True) | |
| # 检查是否生成了 Markdown 文件 | |
| if not os.path.exists(md_file_path): | |
| print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...") | |
| shutil.rmtree(target_dir) # 删除生成的文件夹 | |
| else: | |
| print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"An error occurred during conversion: {e}") | |
| # 如果发生错误且文件夹已生成,则删除文件夹 | |
| if os.path.exists(target_dir): | |
| print(f"Cleaning up incomplete folder: {target_dir}") | |
| shutil.rmtree(target_dir) | |
| # new | |
| def convert_pdf_to_md_new(self, pdf_dir, output_dir="output", method="auto"): | |
| pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) | |
| for pdf_file in pdf_files: | |
| base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
| target_dir = os.path.join(output_dir, base_name) | |
| if os.path.exists(target_dir): | |
| print(f"Folder for {pdf_file} already exists in {output_dir}. Skipping conversion.") | |
| else: | |
| command = ["mineru", "-p", pdf_file, "-o", output_dir, "-m", method] | |
| try: | |
| subprocess.run(command, check=True) | |
| print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"An error occurred: {e}") | |
| def batch_convert_pdfs(pdf_files, output_dir="output", method="auto", max_workers=None): | |
| # Create a process pool to run the conversion in parallel | |
| with ProcessPoolExecutor(max_workers=max_workers) as executor: | |
| # Submit each PDF file to the process pool for conversion | |
| futures = [executor.submit(convert_pdf_to_md, pdf, output_dir, method) for pdf in pdf_files] | |
| # Optionally, you can monitor the status of each future as they complete | |
| for future in futures: | |
| try: | |
| future.result() # This will raise any exceptions that occurred during the processing | |
| except Exception as exc: | |
| print(f"An error occurred during processing: {exc}") | |
| def extract_information_from_md(self, md_text): | |
| title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) | |
| title = title_match.group(1).strip() if title_match else "N/A" | |
| authors_match = re.search( | |
| r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| authors = authors_match.group(1).strip() if authors_match else "N/A" | |
| abstract_match = re.search( | |
| r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| abstract = abstract_match.group(0).strip() if abstract_match else "N/A" | |
| abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) | |
| abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) | |
| introduction_match = re.search( | |
| r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)' | |
| r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| introduction = introduction_match.group(2).strip() if introduction_match else "N/A" | |
| main_content_match = re.search( | |
| r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| if main_content_match: | |
| main_content = main_content_match.group(1).strip() | |
| else: | |
| main_content = "N/A" | |
| extracted_data = { | |
| "title": title, | |
| "authors": authors, | |
| "abstract": abstract, | |
| "introduction": introduction, | |
| "main_content": main_content | |
| } | |
| return extracted_data | |
| def process_md_file(self, md_file_path, survey_id): | |
| loader = UnstructuredMarkdownLoader(md_file_path) | |
| data = loader.load() | |
| assert len(data) == 1, "Expected exactly one document in the markdown file." | |
| assert isinstance(data[0], Document), "The loaded data is not of type Document." | |
| extracted_text = data[0].page_content | |
| extracted_data = self.extract_information_from_md(extracted_text) | |
| if len(extracted_data["abstract"]) < 10: | |
| extracted_data["abstract"] = extracted_data['title'] | |
| title = os.path.splitext(os.path.basename(md_file_path))[0] | |
| title_new = title.strip() | |
| invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] | |
| for char in invalid_chars: | |
| title_new = title_new.replace(char, ' ') | |
| os.makedirs(get_path('txt', survey_id), exist_ok=True) | |
| with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f: | |
| json.dump(extracted_data, f, ensure_ascii=False, indent=4) | |
| return extracted_data['introduction'] | |
| def process_md_file_full(self, md_file_path, survey_id): | |
| loader = UnstructuredMarkdownLoader(md_file_path) | |
| data = loader.load() | |
| assert len(data) == 1, "Expected exactly one document in the markdown file." | |
| assert isinstance(data[0], Document), "The loaded data is not of type Document." | |
| extracted_text = data[0].page_content | |
| extracted_data = self.extract_information_from_md(extracted_text) | |
| if len(extracted_data["abstract"]) < 10: | |
| extracted_data["abstract"] = extracted_data['title'] | |
| title = os.path.splitext(os.path.basename(md_file_path))[0] | |
| title_new = title.strip() | |
| invalid_chars = ['<', '>', ':', '"', '/', '\\', '|', '?', '*', '_'] | |
| for char in invalid_chars: | |
| title_new = title_new.replace(char, ' ') | |
| os.makedirs(get_path('txt', survey_id), exist_ok=True) | |
| with open(get_path('txt', survey_id, f'{title_new}.json'), 'w', encoding='utf-8') as f: | |
| json.dump(extracted_data, f, ensure_ascii=False, indent=4) | |
| return extracted_data['abstract'] + extracted_data['introduction'] + extracted_data['main_content'] | |
| def load_pdf(self, pdf_file, survey_id, mode): | |
| base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
| target_dir = os.path.join(get_path('md', survey_id), base_name) | |
| md_file_path = os.path.join(target_dir, mode, f"{base_name}.md") | |
| print("The md file path is: ", md_file_path) | |
| if os.path.exists(md_file_path): | |
| print(f"Markdown file for {pdf_file} already exists at {md_file_path}. Skipping conversion.", flush=True) | |
| return self.process_md_file(md_file_path, survey_id) | |
| command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", mode] | |
| try: | |
| subprocess.run(command, check=True) | |
| # 检查是否生成了 Markdown 文件 | |
| if not os.path.exists(md_file_path): | |
| print(f"Conversion failed: Markdown file not found at {md_file_path}. Cleaning up folder...") | |
| shutil.rmtree(target_dir) # 删除生成的文件夹 | |
| return None | |
| else: | |
| print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
| return self.process_md_file(md_file_path, survey_id) | |
| except subprocess.CalledProcessError as e: | |
| print(f"An error occurred during conversion: {e}") | |
| # 如果发生错误且文件夹已生成,则删除文件夹 | |
| if os.path.exists(target_dir): | |
| print(f"Cleaning up incomplete folder: {target_dir}") | |
| shutil.rmtree(target_dir) | |
| return None | |
| def load_pdf_new(self, pdf_dir, survey_id): | |
| pdf_files = glob.glob(os.path.join(pdf_dir, "*.pdf")) | |
| for pdf_file in pdf_files: | |
| base_name = os.path.splitext(os.path.basename(pdf_file))[0] | |
| target_dir = os.path.join(get_path('md', survey_id), base_name) | |
| if os.path.exists(target_dir): | |
| print(f"Folder for {pdf_file} already exists in {get_path('md', survey_id)}. Skipping conversion.") | |
| else: | |
| command = ["mineru", "-p", pdf_file, "-o", get_path('md', survey_id), "-m", "auto"] | |
| try: | |
| subprocess.run(command, check=True) | |
| print(f"Successfully converted {pdf_file} to markdown format in {target_dir}.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"An error occurred: {e}") | |
| def parallel_load_pdfs(self, pdf_files, survey_id, max_workers=4): | |
| # Create a process pool to run the conversion in parallel | |
| with ProcessPoolExecutor(max_workers=max_workers) as executor: | |
| # Submit each PDF file to the process pool for conversion | |
| futures = [executor.submit(self.load_pdf, pdf, survey_id, "auto") for pdf in pdf_files] | |
| # Optionally, you can monitor the status of each future as they complete | |
| for future in futures: | |
| try: | |
| future.result() # This will raise any exceptions that occurred during the processing | |
| except Exception as exc: | |
| print(f"An error occurred during processing: {exc}") | |
| def ensure_non_empty_introduction(self, introduction, full_text): | |
| if len(introduction) < 50: | |
| return full_text[:1000] | |
| return introduction | |
| def extract_information_from_md_new(self, md_text): | |
| # Title extraction | |
| title_match = re.search(r'^(.*?)(\n\n|\Z)', md_text, re.DOTALL) | |
| title = title_match.group(1).strip() if title_match else "N/A" | |
| # Authors extraction | |
| authors_match = re.search( | |
| r'\n\n(.*?)(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| authors = authors_match.group(1).strip() if authors_match else "N/A" | |
| # Abstract extraction | |
| abstract_match = re.search( | |
| r'(\n\n[aA][\s]*[bB][\s]*[sS][\s]*[tT][\s]*[rR][\s]*[aA][\s]*[cC][\s]*[tT][^\n]*\n\n)(.*?)(\n\n|\Z)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| abstract = abstract_match.group(0).strip() if abstract_match else "N/A" | |
| abstract = re.sub(r'^[aA]\s*[bB]\s*[sS]\s*[tT]\s*[rR]\s*[aA]\s*[cC]\s*[tT][^\w]*', '', abstract) | |
| abstract = re.sub(r'^[^a-zA-Z]*', '', abstract) | |
| # Introduction extraction | |
| introduction_match = re.search( | |
| r'\n\n([1I][\.\- ]?\s*)?[Ii]\s*[nN]\s*[tT]\s*[rR]\s*[oO]\s*[dD]\s*[uU]\s*[cC]\s*[tT]\s*[iI]\s*[oO]\s*[nN][\.\- ]?\s*\n\n(.*?)' | |
| r'(?=\n\n(?:([2I][I]|\s*2)[^\n]*?\n\n|\n\n(?:[2I][I][^\n]*?\n\n)))', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| introduction = introduction_match.group(2).strip() if introduction_match else "N/A" | |
| # Main content extraction | |
| main_content_match = re.search( | |
| r'(.*?)(\n\n([3I][\.\- ]?\s*)?[Rr][Ee][Ff][Ee][Rr][Ee][Nn][Cc][Ee][Ss][^\n]*\n\n|\Z)', | |
| md_text, | |
| re.DOTALL | |
| ) | |
| if main_content_match: | |
| main_content = main_content_match.group(1).strip() | |
| else: | |
| main_content = "N/A" | |
| extracted_data = { | |
| "title": title, | |
| "authors": authors, | |
| "abstract": abstract, | |
| "introduction": introduction, | |
| "main_content": main_content | |
| } | |
| return extracted_data |