Spaces:
Sleeping
Sleeping
solved poppler-utils
Browse files
app.py
CHANGED
|
@@ -1,121 +1,123 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import fitz # PyMuPDF
|
| 3 |
-
from paddleocr import PPStructure
|
| 4 |
-
from pdf2image import convert_from_path
|
| 5 |
-
import numpy as np
|
| 6 |
-
import json
|
| 7 |
-
import re
|
| 8 |
-
import spacy
|
| 9 |
-
from spacy.matcher import Matcher
|
| 10 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 11 |
-
import gradio as gr
|
| 12 |
-
from tqdm.auto import tqdm
|
| 13 |
-
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
meta[
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
if ent.label_ == '
|
| 70 |
-
meta['
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
if grp
|
| 79 |
-
meta['
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
"
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import fitz # PyMuPDF
|
| 3 |
+
from paddleocr import PPStructure
|
| 4 |
+
from pdf2image import convert_from_path
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
+
import spacy
|
| 9 |
+
from spacy.matcher import Matcher
|
| 10 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
| 11 |
+
import gradio as gr
|
| 12 |
+
from tqdm.auto import tqdm
|
| 13 |
+
import os
|
| 14 |
+
# Ensure Poppler is available
|
| 15 |
+
os.system("apt-get update -y && apt-get install -y poppler-utils")
|
| 16 |
+
# --- Initialization ---
|
| 17 |
+
structure_engine = PPStructure(table=True, ocr=True, layout=True)
|
| 18 |
+
nlp = spacy.load("en_core_web_sm")
|
| 19 |
+
matcher = Matcher(nlp.vocab)
|
| 20 |
+
|
| 21 |
+
# Regex & matcher setup
|
| 22 |
+
date_pattern = r"\d{2}-[A-Za-z]{3}-\d{2}|\d{2}\.\d{2}\.\d{2}"
|
| 23 |
+
party_pattern = r"M/s [A-Za-z\s&-]+(?:Consortium)?"
|
| 24 |
+
pattern = [{"LOWER": "claimant"}, {"IS_PUNCT": True, "OP": "?"}, {"ENT_TYPE": "ORG"}]
|
| 25 |
+
matcher.add("CLAIMANT", [pattern])
|
| 26 |
+
|
| 27 |
+
# Load Legal-BERT pipelines
|
| 28 |
+
ner_model = "nlpaueb/legal-bert-base-uncased"
|
| 29 |
+
token_model = AutoModelForTokenClassification.from_pretrained(ner_model)
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(ner_model)
|
| 31 |
+
ner_pipeline = pipeline("ner", model=token_model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 32 |
+
clf_pipeline = pipeline("text-classification", model=ner_model)
|
| 33 |
+
|
| 34 |
+
# Helper functions
|
| 35 |
+
def extract_text_from_pdf(pdf_path):
|
| 36 |
+
doc = fitz.open(pdf_path)
|
| 37 |
+
pages = []
|
| 38 |
+
for i in range(len(doc)):
|
| 39 |
+
page = doc[i]
|
| 40 |
+
pages.append({"page": i + 1, "text": page.get_text("text") or ""})
|
| 41 |
+
doc.close()
|
| 42 |
+
return pages
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def extract_content_from_images(pdf_path):
|
| 46 |
+
images = convert_from_path(pdf_path)
|
| 47 |
+
results = []
|
| 48 |
+
for i, img in enumerate(images, start=1):
|
| 49 |
+
img_np = np.array(img)
|
| 50 |
+
res = structure_engine(img_np)
|
| 51 |
+
text_lines, tables = [], []
|
| 52 |
+
for block in res:
|
| 53 |
+
if block['type'] == 'text':
|
| 54 |
+
text_lines += [line['text'] for line in block['res'] if 'text' in line]
|
| 55 |
+
elif block['type'] == 'table' and 'html' in block['res']:
|
| 56 |
+
tables.append(block['res']['html'])
|
| 57 |
+
results.append({"page": i, "ocr_text": " ".join(text_lines), "tables_html": tables})
|
| 58 |
+
return results
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def extract_metadata(text):
|
| 62 |
+
meta = {"dates": [], "parties": [], "claimants": [], "tribunals": [], "relationships": [], "clauses": []}
|
| 63 |
+
# Regex
|
| 64 |
+
meta['dates'] = re.findall(date_pattern, text)
|
| 65 |
+
meta['parties'] = re.findall(party_pattern, text)
|
| 66 |
+
# SpaCy
|
| 67 |
+
doc = nlp(text)
|
| 68 |
+
for ent in doc.ents:
|
| 69 |
+
if ent.label_ == 'ORG' and ent.text not in meta['parties']:
|
| 70 |
+
meta['parties'].append(ent.text)
|
| 71 |
+
if ent.label_ == 'GPE':
|
| 72 |
+
meta['tribunals'].append(ent.text)
|
| 73 |
+
for match_id, start, end in matcher(doc):
|
| 74 |
+
meta['claimants'].append(doc[start:end].text)
|
| 75 |
+
# Legal-BERT NER
|
| 76 |
+
for ent in ner_pipeline(text):
|
| 77 |
+
grp = ent['entity_group']
|
| 78 |
+
if grp in ('ORG','PARTY') and ent['word'] not in meta['parties']:
|
| 79 |
+
meta['parties'].append(ent['word'])
|
| 80 |
+
if grp == 'GPE' and ent['word'] not in meta['tribunals']:
|
| 81 |
+
meta['tribunals'].append(ent['word'])
|
| 82 |
+
# Clause classification
|
| 83 |
+
for sent in text.split('. '):
|
| 84 |
+
if len(sent) < 10: continue
|
| 85 |
+
try:
|
| 86 |
+
res = clf_pipeline(sent)[0]
|
| 87 |
+
if res['score'] > 0.7:
|
| 88 |
+
meta['clauses'].append({'type': res['label'], 'text': sent})
|
| 89 |
+
except:
|
| 90 |
+
pass
|
| 91 |
+
return meta
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def process_pdf(file_obj):
|
| 95 |
+
# Save uploaded file
|
| 96 |
+
pdf_path = file_obj.name
|
| 97 |
+
# 1. Text
|
| 98 |
+
text_pages = extract_text_from_pdf(pdf_path)
|
| 99 |
+
# 2. OCR & tables
|
| 100 |
+
img_content = extract_content_from_images(pdf_path)
|
| 101 |
+
# 3. Metadata
|
| 102 |
+
metadata = []
|
| 103 |
+
for page in text_pages:
|
| 104 |
+
metadata.append({"page": page['page'], "metadata": extract_metadata(page['text'])})
|
| 105 |
+
# Combine
|
| 106 |
+
output = {
|
| 107 |
+
"text_pages": text_pages,
|
| 108 |
+
"image_content": img_content,
|
| 109 |
+
"metadata": metadata
|
| 110 |
+
}
|
| 111 |
+
return output
|
| 112 |
+
|
| 113 |
+
# Gradio Interface
|
| 114 |
+
iface = gr.Interface(
|
| 115 |
+
fn=process_pdf,
|
| 116 |
+
inputs=gr.File(label="Upload PDF", file_types=['.pdf']),
|
| 117 |
+
outputs=gr.JSON(label="Extraction Result"),
|
| 118 |
+
title="PDF OCR & Metadata Extractor",
|
| 119 |
+
description="Upload a PDF, wait for processing, and view structured JSON output including text, OCR, tables, and metadata."
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
if __name__ == '__main__':
|
| 123 |
+
iface.launch()
|