Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import spaces | |
| import subprocess | |
| import gradio as gr | |
| from threading import Thread | |
| from huggingface_hub import login | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| login(os.environ.get("HF_TOKEN")) | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| model_id = "microsoft/Phi-3-mini-128k-instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.bfloat16, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| attn_implementation="flash_attention_2" | |
| ) | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str, | |
| max_new_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| top_k: int, | |
| repetition_penalty: int | |
| ): | |
| conversation = [] | |
| if system_prompt: | |
| conversation.append({"role": "system", "content": system_prompt}) | |
| for user, assistant in chat_history: | |
| conversation.append({"role": "user", "content": user}) | |
| conversation.append({"role": "assistant", "content": assistant}) | |
| conversation.append({"role": "user", "content": message}) | |
| streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| input_ids, attention_mask = tokenizer.apply_chat_template( | |
| conversation, | |
| add_generation_prompt=True, | |
| return_tensors="pt", | |
| return_dict=True | |
| ).to(model.device).values() | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids, "attention_mask": attention_mask}, | |
| streamer=streamer, | |
| do_sample=True, | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_k=top_k, | |
| repetition_penalty=repetition_penalty, | |
| top_p=top_p | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for new_token in streamer: | |
| outputs.append(new_token) | |
| yield "".join(outputs) | |
| gr.ChatInterface( | |
| fn=generate, | |
| title="π Phi-3 mini 128k instruct", | |
| description="", | |
| additional_inputs=[ | |
| gr.Textbox( | |
| label="System prompt", | |
| lines=5, | |
| value="You are a helpful digital assistant." | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=2048, | |
| step=1, | |
| value=1024, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Can you provide ways to eat combinations of bananas and dragonfruits?"], | |
| ["Write a story about a dragon fruit that flies into outer space!"], | |
| ["I am going to Bali, what should I see"], | |
| ], | |
| ).queue().launch() | |