| import argparse | |
| import json | |
| import os | |
| import shutil | |
| import torch | |
| from huggingface_hub import CommitOperationAdd, HfApi, hf_hub_download | |
| from huggingface_hub.file_download import repo_folder_name | |
| from transformers import AutoConfig | |
| from transformers.pipelines.base import infer_framework_load_model | |
| from safetensors.torch import save_file | |
| def check_file_size(sf_filename, pt_filename): | |
| sf_size = os.stat(sf_filename).st_size | |
| pt_size = os.stat(pt_filename).st_size | |
| if (sf_size - pt_size) / pt_size > 0.01: | |
| raise RuntimeError(f"""The file size different is more than 1%: | |
| - {sf_filename}: {sf_size} | |
| - {pt_filename}: {pt_size} | |
| """) | |
| def rename(pt_filename) -> str: | |
| local = pt_filename.replace(".bin", ".safetensors") | |
| local = local.replace("pytorch_model", "model") | |
| return local | |
| def convert_multi(model_id): | |
| filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin.index.json") | |
| with open(filename, "r") as f: | |
| data = json.load(f) | |
| filenames = set(data["weight_map"].values()) | |
| for filename in filenames: | |
| cached_filename = hf_hub_download(repo_id=model_id, filename=filename) | |
| loaded = torch.load(cached_filename) | |
| sf_filename = rename(filename) | |
| local = os.path.join(folder, sf_filename) | |
| save_file(loaded, local, metadata={"format": "pt"}) | |
| check_file_size(local, cached_filename) | |
| local_filenames.append(local) | |
| index = os.path.join(folder, "model.safetensors.index.json") | |
| with open(index, "w") as f: | |
| newdata = {k: v for k, v in data.items()} | |
| newmap = {k: rename(v) for k, v in data["weight_map"].items()} | |
| newdata["weight_map"] = newmap | |
| json.dump(newdata, f) | |
| local_filenames.append(index) | |
| operations = [CommitOperationAdd(path_in_repo=local.split("/")[-1], path_or_fileobj=local) for local in local_filenames] | |
| return operations | |
| def convert_single(model_id, folder): | |
| sf_filename = "model.safetensors" | |
| filename = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin") | |
| loaded = torch.load(filename) | |
| local = os.path.join(folder, sf_filename) | |
| save_file(loaded, local, metadata={"format": "pt"}) | |
| check_file_size(local, filename) | |
| operations = [CommitOperationAdd(path_in_repo=sf_filename, path_or_fileobj=local)] | |
| return operations | |
| def check_final_model(model_id, folder): | |
| config = hf_hub_download(repo_id=model_id, filename="config.json") | |
| shutil.copy(config, os.path.join(folder, "config.json")) | |
| config = AutoConfig.from_pretrained(folder) | |
| _, sf_model = infer_framework_load_model(folder, config) | |
| _, pt_model = infer_framework_load_model(model_id, config) | |
| input_ids = torch.arange(10).long().unsqueeze(0) | |
| sf_logits = sf_model(input_ids) | |
| pt_logits = pt_model(input_ids) | |
| torch.testing.assert_close(sf_logits, pt_logits) | |
| print(f"Model {model_id} is ok !") | |
| def convert(api, model_id): | |
| info = api.model_info(model_id) | |
| filenames = set(s.rfilename for s in info.siblings) | |
| folder = repo_folder_name(repo_id=model_id, repo_type="models") | |
| os.makedirs(folder) | |
| try: | |
| operations = None | |
| if "model.safetensors" in filenames or "model_index.safetensors.index.json" in filenames: | |
| print(f"Model {model_id} is already converted, skipping..") | |
| elif "pytorch_model.bin" in filenames: | |
| operations = convert_single(model_id, folder) | |
| elif "pytorch_model.bin.index.json" in filenames: | |
| operations = convert_multi(model_id, folder) | |
| else: | |
| raise RuntimeError(f"Model {model_id} doesn't seem to be a valid pytorch model. Cannot convert") | |
| if operations: | |
| check_final_model(model_id, folder) | |
| api.create_commit( | |
| repo_id=model_id, | |
| operations=operations, | |
| commit_message="Adding `safetensors` variant of this model", | |
| create_pr=True, | |
| ) | |
| finally: | |
| shutil.rmtree(folder) | |
| return 1 | |
| if __name__ == "__main__": | |
| DESCRIPTION = """ | |
| Simple utility tool to convert automatically some weights on the hub to `safetensors` format. | |
| It is PyTorch exclusive for now. | |
| It works by downloading the weights (PT), converting them locally, and uploading them back | |
| as a PR on the hub. | |
| """ | |
| parser = argparse.ArgumentParser(description=DESCRIPTION) | |
| parser.add_argument( | |
| "model_id", | |
| type=str, | |
| help="The name of the model on the hub to convert. E.g. `gpt2` or `facebook/wav2vec2-base-960h`", | |
| ) | |
| args = parser.parse_args() | |
| model_id = args.model_id | |
| api = HfApi() | |
| convert(api, model_id) | |