Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from sentence_transformers import SentenceTransformer, util
|
| 4 |
+
import PyPDF2
|
| 5 |
+
from docx import Document
|
| 6 |
+
|
| 7 |
+
# Load the tokenizer and model for sentence embeddings
|
| 8 |
+
@st.cache_resource
|
| 9 |
+
def load_model():
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained("rakeshkiriyath/gpt2Medium_text_to_sql")
|
| 12 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Smaller, faster sentence embeddings model
|
| 13 |
+
return tokenizer, model, sentence_model
|
| 14 |
+
|
| 15 |
+
# Extract text from a PDF file
|
| 16 |
+
def extract_text_from_pdf(pdf_file):
|
| 17 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 18 |
+
text = ""
|
| 19 |
+
for page in pdf_reader.pages:
|
| 20 |
+
text += page.extract_text()
|
| 21 |
+
return text
|
| 22 |
+
|
| 23 |
+
# Extract text from a Word document
|
| 24 |
+
def extract_text_from_word(docx_file):
|
| 25 |
+
doc = Document(docx_file)
|
| 26 |
+
text = ""
|
| 27 |
+
for paragraph in doc.paragraphs:
|
| 28 |
+
text += paragraph.text + "\n"
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
# Compare sentences for similarity
|
| 32 |
+
def compare_sentences(doc1_sentences, doc2_sentences, sentence_model):
|
| 33 |
+
similar_sentences = []
|
| 34 |
+
for i, sent1 in enumerate(doc1_sentences):
|
| 35 |
+
best_match = None
|
| 36 |
+
best_score = 0
|
| 37 |
+
for j, sent2 in enumerate(doc2_sentences):
|
| 38 |
+
score = util.pytorch_cos_sim(sentence_model.encode(sent1), sentence_model.encode(sent2)).item()
|
| 39 |
+
if score > best_score: # Higher similarity score
|
| 40 |
+
best_score = score
|
| 41 |
+
best_match = (i, j, score, sent1, sent2)
|
| 42 |
+
if best_match and best_score > 0.6: # Threshold for similarity
|
| 43 |
+
similar_sentences.append(best_match)
|
| 44 |
+
return similar_sentences
|
| 45 |
+
|
| 46 |
+
# Streamlit UI
|
| 47 |
+
def main():
|
| 48 |
+
st.title("Comparative Analysis of Two Documents")
|
| 49 |
+
st.sidebar.header("Upload Files")
|
| 50 |
+
|
| 51 |
+
# Upload files
|
| 52 |
+
uploaded_file1 = st.sidebar.file_uploader("Upload the First Document (PDF/Word)", type=["pdf", "docx"])
|
| 53 |
+
uploaded_file2 = st.sidebar.file_uploader("Upload the Second Document (PDF/Word)", type=["pdf", "docx"])
|
| 54 |
+
|
| 55 |
+
if uploaded_file1 and uploaded_file2:
|
| 56 |
+
# Extract text from the uploaded documents
|
| 57 |
+
text1 = extract_text_from_pdf(uploaded_file1) if uploaded_file1.name.endswith(".pdf") else extract_text_from_word(uploaded_file1)
|
| 58 |
+
text2 = extract_text_from_pdf(uploaded_file2) if uploaded_file2.name.endswith(".pdf") else extract_text_from_word(uploaded_file2)
|
| 59 |
+
|
| 60 |
+
# Split text into sentences
|
| 61 |
+
doc1_sentences = text1.split('. ')
|
| 62 |
+
doc2_sentences = text2.split('. ')
|
| 63 |
+
|
| 64 |
+
# Load model
|
| 65 |
+
tokenizer, model, sentence_model = load_model()
|
| 66 |
+
|
| 67 |
+
# Perform sentence comparison
|
| 68 |
+
similar_sentences = compare_sentences(doc1_sentences, doc2_sentences, sentence_model)
|
| 69 |
+
|
| 70 |
+
# Display results
|
| 71 |
+
st.header("Comparative Analysis Results")
|
| 72 |
+
if similar_sentences:
|
| 73 |
+
for match in similar_sentences:
|
| 74 |
+
doc1_index, doc2_index, score, sent1, sent2 = match
|
| 75 |
+
st.markdown(f"**Document 1 Sentence {doc1_index + 1}:** {sent1}")
|
| 76 |
+
st.markdown(f"**Document 2 Sentence {doc2_index + 1}:** {sent2}")
|
| 77 |
+
st.markdown(f"**Similarity Score:** {score:.2f}")
|
| 78 |
+
st.markdown("---")
|
| 79 |
+
else:
|
| 80 |
+
st.info("No significantly similar sentences found.")
|
| 81 |
+
|
| 82 |
+
else:
|
| 83 |
+
st.warning("Please upload two documents to compare.")
|
| 84 |
+
|
| 85 |
+
if __name__ == "__main__":
|
| 86 |
+
main()
|