Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,18 +13,18 @@ english_model = pipeline(
|
|
| 13 |
model="siebert/sentiment-roberta-large-english"
|
| 14 |
)
|
| 15 |
|
| 16 |
-
# same model but we'll ensemble results for Roman+Urdu
|
| 17 |
urdu_model = pipeline(
|
| 18 |
"sentiment-analysis",
|
| 19 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
| 20 |
)
|
|
|
|
| 21 |
roman_urdu_model = pipeline(
|
| 22 |
"sentiment-analysis",
|
| 23 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
| 24 |
)
|
| 25 |
|
| 26 |
# -----------------------------
|
| 27 |
-
# CSV Setup
|
| 28 |
# -----------------------------
|
| 29 |
SAVE_FILE = "sentiment_logs.csv"
|
| 30 |
LOCK_FILE = SAVE_FILE + ".lock"
|
|
@@ -37,200 +37,34 @@ if not os.path.exists(SAVE_FILE):
|
|
| 37 |
# -----------------------------
|
| 38 |
# Improved Language Detection
|
| 39 |
# -----------------------------
|
| 40 |
-
roman_urdu_keywords = {
|
| 41 |
-
# General Feedback Tone
|
| 42 |
-
"acha", "bohot_acha", "bhot_acha", "bahut_acha", "bura", "theek", "behtareen", "zabardast", "umda", "ghalit", "galat",
|
| 43 |
-
"accha", "awesome", "perfect", "kamzor", "behtar", "sahi", "ghalat", "faida", "nuksan",
|
| 44 |
-
|
| 45 |
-
# Study / Performance / Behavior
|
| 46 |
-
"parhai", "parhayi", "parhta", "parhti", "parhne", "parho", "assignment", "homework", "test", "imtihaan", "grade",
|
| 47 |
-
"result", "mehnat", "kaam", "performance", "focus", "dhyaan", "attendance", "class", "lecture",
|
| 48 |
-
"samajh", "samajhna", "samjhaya", "samajh_aya", "nahi_samajh_aya", "barhta", "seekhna", "seekh", "seekh_rha", "seekh_rhi",
|
| 49 |
-
"kaam_chor", "mehnati", "active", "lazy", "shararti", "tawajjo", "discipline", "behavior",
|
| 50 |
-
|
| 51 |
-
# Teacher / Student Relationship
|
| 52 |
-
"ustad", "teacher", "sir", "madam", "miss", "meray_ustad", "respect", "izzat", "ikhtiyar",
|
| 53 |
-
"mohabbat", "pyar", "taluq", "taaluq", "thoda", "ziyada", "kam", "bohot", "acha_sulook",
|
| 54 |
-
|
| 55 |
-
# Feedback Expressions
|
| 56 |
-
"kyun", "kese", "kaisa", "kaisi", "kyu", "hain", "hai", "tha", "thi", "the", "hoga", "hogaya", "hogi",
|
| 57 |
-
"karna", "karta", "kartay", "karti", "karne", "kerna", "hoza", "hona", "hota", "hotay", "hoti", "hona_chahiye",
|
| 58 |
-
"try", "koshish", "koshish_karna", "lagataar", "barhawa", "improve", "improvement", "masla", "problem", "issue",
|
| 59 |
-
|
| 60 |
-
# Emotion / Reaction Words
|
| 61 |
-
"khushi", "dukh", "tension", "fikr", "relax", "comfortable", "confidence", "yaqeen", "jazba", "motivation",
|
| 62 |
-
"interest", "boriyat", "thakan", "ghussa", "naraz", "khush", "preshan", "shukriya",
|
| 63 |
-
|
| 64 |
-
# School / Class Words
|
| 65 |
-
"school", "college", "university", "classroom", "class_fellow", "principal", "registration", "semester", "assignment_submit",
|
| 66 |
-
"presentation", "group_work", "project", "notebook", "copy", "kitab", "pencil", "pen", "bag",
|
| 67 |
-
|
| 68 |
-
# Time / Experience
|
| 69 |
-
"aaj", "kal", "kal_tak", "pehle", "baad_mein", "hamesha", "roz", "rozana", "abi", "abhi", "der", "jaldi",
|
| 70 |
-
"guzra", "raftar", "barh_gayi", "kam_hogi",
|
| 71 |
-
|
| 72 |
-
# Misc useful connectors
|
| 73 |
-
"mera", "meri", "mere", "tera", "teri", "tum", "aap", "hum", "wo", "yahan", "wahan", "ka", "ki", "ke",
|
| 74 |
-
"se", "tak", "par", "liye", "bhi", "magar", "lekin", "aur"
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
|
| 78 |
def detect_language(text):
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
# rule 1: actual Urdu characters
|
| 82 |
-
if any(ch in urdu_chars for ch in clean):
|
| 83 |
return "Urdu"
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
return "English"
|
| 92 |
|
| 93 |
# -----------------------------
|
| 94 |
# Roman Urdu Normalization
|
| 95 |
# -----------------------------
|
| 96 |
-
|
| 97 |
def normalize_roman_urdu(text):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
"acha nai": "acha nahi",
|
| 102 |
-
"acha hy": "acha hai",
|
| 103 |
-
"acha h": "acha hai",
|
| 104 |
-
"accha hy": "acha hai",
|
| 105 |
-
"achha hy": "acha hai",
|
| 106 |
-
"bura hy": "bura hai",
|
| 107 |
-
"bura h": "bura hai",
|
| 108 |
-
"bohot acha": "bohot acha",
|
| 109 |
-
"bohat acha": "bohot acha",
|
| 110 |
-
"boht acha": "bohot acha",
|
| 111 |
-
"zabrdast": "zabardast",
|
| 112 |
-
"zabardst": "zabardast",
|
| 113 |
-
"thek": "theek",
|
| 114 |
-
"thik": "theek",
|
| 115 |
-
|
| 116 |
-
# Negation variations
|
| 117 |
-
"ni": "nahi",
|
| 118 |
-
"nai": "nahi",
|
| 119 |
-
"nehi": "nahi",
|
| 120 |
-
"nahe": "nahi",
|
| 121 |
-
"nae": "nahi",
|
| 122 |
-
"nhe": "nahi",
|
| 123 |
-
"nhi": "nahi",
|
| 124 |
-
|
| 125 |
-
# Auxiliary verbs
|
| 126 |
-
"hy": "hai",
|
| 127 |
-
"h": "hai",
|
| 128 |
-
"haii": "hai",
|
| 129 |
-
"ha": "hai",
|
| 130 |
-
"hh": "hai",
|
| 131 |
-
"hu": "hu",
|
| 132 |
-
"hun": "hoon",
|
| 133 |
-
"hn": "hain",
|
| 134 |
-
"hainn": "hain",
|
| 135 |
-
"hyn": "hain",
|
| 136 |
-
|
| 137 |
-
# Pronoun & possessive normalizations
|
| 138 |
-
"mera": "mera",
|
| 139 |
-
"meri": "meri",
|
| 140 |
-
"mere": "mere",
|
| 141 |
-
"tera": "tera",
|
| 142 |
-
"teri": "teri",
|
| 143 |
-
"tumhara": "tumhara",
|
| 144 |
-
"apna": "apna",
|
| 145 |
-
"aapka": "aapka",
|
| 146 |
-
|
| 147 |
-
# Common teacher/student terms
|
| 148 |
-
"ustad": "ustad",
|
| 149 |
-
"ustaad": "ustad",
|
| 150 |
-
"ostad": "ustad",
|
| 151 |
-
"ostaad": "ustad",
|
| 152 |
-
"teacher": "teacher",
|
| 153 |
-
"sir": "sir",
|
| 154 |
-
"madam": "madam",
|
| 155 |
-
"miss": "madam",
|
| 156 |
-
"student": "student",
|
| 157 |
-
"talib e ilm": "talib_e_ilm",
|
| 158 |
-
|
| 159 |
-
# Study/learning phrases
|
| 160 |
-
"parhai": "parhai",
|
| 161 |
-
"parhayi": "parhai",
|
| 162 |
-
"parhne": "parhne",
|
| 163 |
-
"parhta": "parhta",
|
| 164 |
-
"parhti": "parhti",
|
| 165 |
-
"parhny": "parhne",
|
| 166 |
-
"parho": "parho",
|
| 167 |
-
"seekhta": "seekhta",
|
| 168 |
-
"seekhti": "seekhti",
|
| 169 |
-
"seekh rha": "seekh raha",
|
| 170 |
-
"seekh rhi": "seekh rahi",
|
| 171 |
-
|
| 172 |
-
# Effort/performance
|
| 173 |
-
"mehnat kr": "mehnat kar",
|
| 174 |
-
"mehnat kro": "mehnat karo",
|
| 175 |
-
"mehnat karna": "mehnat karna",
|
| 176 |
-
"kaam kr": "kaam kar",
|
| 177 |
-
"kaam kro": "kaam karo",
|
| 178 |
-
"koshish kr": "koshish kar",
|
| 179 |
-
"koshish kro": "koshish karo",
|
| 180 |
-
"improve kr": "improve kar",
|
| 181 |
-
"improve kro": "improve karo",
|
| 182 |
-
|
| 183 |
-
# Time/experience
|
| 184 |
-
"aj": "aaj",
|
| 185 |
-
"kal": "kal",
|
| 186 |
-
"kl": "kal",
|
| 187 |
-
"pehly": "pehle",
|
| 188 |
-
"bad me": "baad mein",
|
| 189 |
-
"abhi tk": "abhi tak",
|
| 190 |
-
|
| 191 |
-
# Common expressions
|
| 192 |
-
"shukriya": "shukriya",
|
| 193 |
-
"thanks": "thanks",
|
| 194 |
-
"thanku": "thankyou",
|
| 195 |
-
"thanx": "thankyou",
|
| 196 |
-
"plz": "please",
|
| 197 |
-
"pls": "please",
|
| 198 |
-
"okey": "ok",
|
| 199 |
-
"okk": "ok",
|
| 200 |
-
"oky": "ok",
|
| 201 |
-
|
| 202 |
-
# Misheard or alternate forms
|
| 203 |
-
"acha lagta": "acha lagta",
|
| 204 |
-
"bura lagta": "bura lagta",
|
| 205 |
-
"samjh ni aya": "samajh nahi aya",
|
| 206 |
-
"samjh nai aya": "samajh nahi aya",
|
| 207 |
-
"samjh nh aya": "samajh nahi aya",
|
| 208 |
-
"smjh ni aya": "samajh nahi aya",
|
| 209 |
-
"smjh gya": "samajh gaya",
|
| 210 |
-
"smjh gayi": "samajh gayi",
|
| 211 |
-
|
| 212 |
-
# Short common fixes
|
| 213 |
-
"kr": "kar",
|
| 214 |
-
"kro": "karo",
|
| 215 |
-
"krta": "karta",
|
| 216 |
-
"krti": "karti",
|
| 217 |
-
"kra": "kara",
|
| 218 |
-
"kia": "kiya",
|
| 219 |
-
"kiya tha": "kiya tha",
|
| 220 |
-
"ki thi": "ki thi",
|
| 221 |
-
"krna": "karna",
|
| 222 |
-
"krne": "karne",
|
| 223 |
-
"krny": "karne",
|
| 224 |
-
}
|
| 225 |
-
|
| 226 |
-
for k, v in replacements.items():
|
| 227 |
-
text = re.sub(rf"\b{k}\b", v, text, flags=re.IGNORECASE)
|
| 228 |
-
|
| 229 |
return text
|
| 230 |
|
| 231 |
-
|
| 232 |
# -----------------------------
|
| 233 |
-
#
|
| 234 |
# -----------------------------
|
| 235 |
def normalize_label(label):
|
| 236 |
label = label.lower()
|
|
@@ -242,78 +76,73 @@ def normalize_label(label):
|
|
| 242 |
return "Neutral"
|
| 243 |
|
| 244 |
# -----------------------------
|
| 245 |
-
#
|
| 246 |
# -----------------------------
|
| 247 |
-
def
|
| 248 |
-
|
| 249 |
-
"Positive": "
|
| 250 |
-
"Negative": "
|
| 251 |
-
"Neutral":
|
| 252 |
}
|
| 253 |
-
return
|
| 254 |
|
| 255 |
# -----------------------------
|
| 256 |
-
#
|
| 257 |
-
# -----------------------------
|
| 258 |
-
def adjust_for_neutral(text, sentiment, score):
|
| 259 |
-
neutral_triggers = ["ہورہی ہے", "ہو رہی ہے", "ہے", "tha", "thi"]
|
| 260 |
-
if sentiment != "Neutral" and any(p in text for p in neutral_triggers):
|
| 261 |
-
if score < 0.9: # descriptive statements, low emotional intensity
|
| 262 |
-
return "Neutral", 0.7
|
| 263 |
-
return sentiment, score
|
| 264 |
-
|
| 265 |
-
# -----------------------------
|
| 266 |
-
# Combine Roman Urdu & Urdu Models (Ensemble)
|
| 267 |
# -----------------------------
|
| 268 |
def ensemble_roman_urdu(text):
|
| 269 |
ru = roman_urdu_model(text)[0]
|
| 270 |
ur = urdu_model(text)[0]
|
|
|
|
| 271 |
ru_sent, ur_sent = normalize_label(ru["label"]), normalize_label(ur["label"])
|
|
|
|
| 272 |
if ru_sent == ur_sent:
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
|
|
|
|
|
|
| 277 |
|
| 278 |
# -----------------------------
|
| 279 |
-
#
|
| 280 |
# -----------------------------
|
| 281 |
-
def
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
|
| 289 |
-
|
| 290 |
-
if lang == "English":
|
| 291 |
-
result = english_model(text)[0]
|
| 292 |
-
elif lang == "Urdu":
|
| 293 |
-
result = urdu_model(text)[0]
|
| 294 |
-
else: # Roman Urdu
|
| 295 |
-
text = normalize_roman_urdu(text)
|
| 296 |
-
result = ensemble_roman_urdu(text)
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
new_row = pd.DataFrame([[text, lang, sentiment, score]],
|
| 309 |
-
columns=["Sentence", "Language", "Sentiment", "Confidence"])
|
| 310 |
-
df = pd.concat([df, new_row], ignore_index=True)
|
| 311 |
-
df.to_csv(SAVE_FILE, index=False, encoding="utf-8-sig")
|
| 312 |
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
-
|
| 316 |
-
return f"⚠️ Error: {str(e)}", "", "", SAVE_FILE
|
| 317 |
|
| 318 |
# -----------------------------
|
| 319 |
# Show Logs
|
|
@@ -331,13 +160,12 @@ with gr.Blocks() as demo:
|
|
| 331 |
gr.Markdown(
|
| 332 |
"## 🌍 Multilingual Sentiment Analysis (English • Urdu • Roman Urdu)\n"
|
| 333 |
"Detect **Positive**, **Negative**, or **Neutral** tone with confidence score.\n\n"
|
| 334 |
-
"🪶
|
| 335 |
-
"💾 All analyzed text is stored permanently in the same CSV, even across shared sessions."
|
| 336 |
)
|
| 337 |
|
| 338 |
with gr.Row():
|
| 339 |
with gr.Column():
|
| 340 |
-
user_text = gr.Textbox(label="✍️ Enter text", placeholder="Type
|
| 341 |
lang_dropdown = gr.Dropdown(
|
| 342 |
["Auto Detect", "English", "Urdu", "Roman Urdu"],
|
| 343 |
value="Auto Detect", label="🌐 Language"
|
|
@@ -347,13 +175,13 @@ with gr.Blocks() as demo:
|
|
| 347 |
|
| 348 |
with gr.Column():
|
| 349 |
out_sent = gr.Textbox(label="Sentiment")
|
| 350 |
-
out_conf = gr.Textbox(label="Confidence
|
| 351 |
-
out_exp = gr.Textbox(label="Explanation")
|
| 352 |
-
out_file = gr.File(label="⬇️ Download
|
| 353 |
|
| 354 |
logs_df = gr.Dataframe(
|
| 355 |
headers=["Sentence", "Language", "Sentiment", "Confidence"],
|
| 356 |
-
label="🧾
|
| 357 |
)
|
| 358 |
|
| 359 |
btn_analyze.click(analyze_sentiment,
|
|
@@ -363,4 +191,4 @@ with gr.Blocks() as demo:
|
|
| 363 |
btn_show.click(show_logs, outputs=[logs_df])
|
| 364 |
|
| 365 |
if __name__ == "__main__":
|
| 366 |
-
demo.launch()
|
|
|
|
| 13 |
model="siebert/sentiment-roberta-large-english"
|
| 14 |
)
|
| 15 |
|
|
|
|
| 16 |
urdu_model = pipeline(
|
| 17 |
"sentiment-analysis",
|
| 18 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
| 19 |
)
|
| 20 |
+
|
| 21 |
roman_urdu_model = pipeline(
|
| 22 |
"sentiment-analysis",
|
| 23 |
model="tahamueed23/fine_tuned_cardiffnlp_urdu_and_roman-urdu"
|
| 24 |
)
|
| 25 |
|
| 26 |
# -----------------------------
|
| 27 |
+
# CSV Setup
|
| 28 |
# -----------------------------
|
| 29 |
SAVE_FILE = "sentiment_logs.csv"
|
| 30 |
LOCK_FILE = SAVE_FILE + ".lock"
|
|
|
|
| 37 |
# -----------------------------
|
| 38 |
# Improved Language Detection
|
| 39 |
# -----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def detect_language(text):
|
| 41 |
+
urdu_script = re.compile(r"[\u0600-\u06FF]")
|
| 42 |
+
if urdu_script.search(text):
|
|
|
|
|
|
|
| 43 |
return "Urdu"
|
| 44 |
|
| 45 |
+
roman_urdu_patterns = [
|
| 46 |
+
r"\b(hai|hain|tha|thi|parhta|parhai|acha|bura|bohot|zabardast)\b",
|
| 47 |
+
r"\b(sir|madam|ustad|class|parh|samajh)\b",
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
text_l = text.lower()
|
| 51 |
+
for p in roman_urdu_patterns:
|
| 52 |
+
if re.search(p, text_l):
|
| 53 |
+
return "Roman Urdu"
|
| 54 |
|
| 55 |
return "English"
|
| 56 |
|
| 57 |
# -----------------------------
|
| 58 |
# Roman Urdu Normalization
|
| 59 |
# -----------------------------
|
|
|
|
| 60 |
def normalize_roman_urdu(text):
|
| 61 |
+
text = text.lower()
|
| 62 |
+
text = text.replace("hy", "hai").replace("h", "hai")
|
| 63 |
+
text = re.sub(r"\bnhi\b|\bnai\b|\bnhi\b", "nahi", text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
return text
|
| 65 |
|
|
|
|
| 66 |
# -----------------------------
|
| 67 |
+
# Normalize Labels
|
| 68 |
# -----------------------------
|
| 69 |
def normalize_label(label):
|
| 70 |
label = label.lower()
|
|
|
|
| 76 |
return "Neutral"
|
| 77 |
|
| 78 |
# -----------------------------
|
| 79 |
+
# Polarity Explanation
|
| 80 |
# -----------------------------
|
| 81 |
+
def polarity_explanation(text, sentiment):
|
| 82 |
+
explanations = {
|
| 83 |
+
"Positive": "Contains praise words or positive evaluation.",
|
| 84 |
+
"Negative": "Contains criticism or negative expressions.",
|
| 85 |
+
"Neutral": "Factual statement or balanced observation."
|
| 86 |
}
|
| 87 |
+
return explanations.get(sentiment, "")
|
| 88 |
|
| 89 |
# -----------------------------
|
| 90 |
+
# Ensemble Roman Urdu + Urdu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
# -----------------------------
|
| 92 |
def ensemble_roman_urdu(text):
|
| 93 |
ru = roman_urdu_model(text)[0]
|
| 94 |
ur = urdu_model(text)[0]
|
| 95 |
+
|
| 96 |
ru_sent, ur_sent = normalize_label(ru["label"]), normalize_label(ur["label"])
|
| 97 |
+
|
| 98 |
if ru_sent == ur_sent:
|
| 99 |
+
return ru if ru["score"] >= ur["score"] else ur
|
| 100 |
+
|
| 101 |
+
# Weight Roman Urdu higher for Roman Urdu input
|
| 102 |
+
weight_ru = ru["score"] * 1.25
|
| 103 |
+
weight_ur = ur["score"]
|
| 104 |
+
return ru if weight_ru >= weight_ur else ur
|
| 105 |
|
| 106 |
# -----------------------------
|
| 107 |
+
# Adjust sentiment if low intensity
|
| 108 |
# -----------------------------
|
| 109 |
+
def adjust_for_neutral(text, sentiment, score):
|
| 110 |
+
if sentiment in ["Positive", "Negative"] and score < 0.7:
|
| 111 |
+
return "Neutral", score
|
| 112 |
+
return sentiment, score
|
| 113 |
|
| 114 |
+
# -----------------------------
|
| 115 |
+
# Main Analysis Function
|
| 116 |
+
# -----------------------------
|
| 117 |
+
def analyze_sentiment(text, lang_hint):
|
| 118 |
+
if not text.strip():
|
| 119 |
+
return "⚠️ Please enter a sentence.", "", "", SAVE_FILE
|
| 120 |
|
| 121 |
+
lang = lang_hint if lang_hint != "Auto Detect" else detect_language(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
if lang == "English":
|
| 124 |
+
result = english_model(text)[0]
|
| 125 |
+
elif lang == "Urdu":
|
| 126 |
+
result = urdu_model(text)[0]
|
| 127 |
+
else:
|
| 128 |
+
text = normalize_roman_urdu(text)
|
| 129 |
+
result = ensemble_roman_urdu(text)
|
| 130 |
|
| 131 |
+
sentiment = normalize_label(result["label"])
|
| 132 |
+
score = round(float(result["score"]), 3)
|
| 133 |
+
sentiment, score = adjust_for_neutral(text, sentiment, score)
|
| 134 |
+
explanation = polarity_explanation(text, sentiment)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
+
# Save logs
|
| 137 |
+
with FileLock(LOCK_FILE):
|
| 138 |
+
df = pd.read_csv(SAVE_FILE, encoding="utf-8-sig") \
|
| 139 |
+
if os.path.exists(SAVE_FILE) else pd.DataFrame(columns=["Sentence", "Language", "Sentiment", "Confidence"])
|
| 140 |
+
new_row = pd.DataFrame([[text, lang, sentiment, score]],
|
| 141 |
+
columns=["Sentence", "Language", "Sentiment", "Confidence"])
|
| 142 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
| 143 |
+
df.to_csv(SAVE_FILE, index=False, encoding="utf-8-sig")
|
| 144 |
|
| 145 |
+
return sentiment, str(score), explanation, SAVE_FILE
|
|
|
|
| 146 |
|
| 147 |
# -----------------------------
|
| 148 |
# Show Logs
|
|
|
|
| 160 |
gr.Markdown(
|
| 161 |
"## 🌍 Multilingual Sentiment Analysis (English • Urdu • Roman Urdu)\n"
|
| 162 |
"Detect **Positive**, **Negative**, or **Neutral** tone with confidence score.\n\n"
|
| 163 |
+
"🪶 Improved Roman Urdu normalization + ensemble + polarity explanation.\n"
|
|
|
|
| 164 |
)
|
| 165 |
|
| 166 |
with gr.Row():
|
| 167 |
with gr.Column():
|
| 168 |
+
user_text = gr.Textbox(label="✍️ Enter text", placeholder="Type English, Urdu, or Roman Urdu...")
|
| 169 |
lang_dropdown = gr.Dropdown(
|
| 170 |
["Auto Detect", "English", "Urdu", "Roman Urdu"],
|
| 171 |
value="Auto Detect", label="🌐 Language"
|
|
|
|
| 175 |
|
| 176 |
with gr.Column():
|
| 177 |
out_sent = gr.Textbox(label="Sentiment")
|
| 178 |
+
out_conf = gr.Textbox(label="Confidence (0–1)")
|
| 179 |
+
out_exp = gr.Textbox(label="Polarity Explanation")
|
| 180 |
+
out_file = gr.File(label="⬇️ Download Logs (.csv)", type="filepath")
|
| 181 |
|
| 182 |
logs_df = gr.Dataframe(
|
| 183 |
headers=["Sentence", "Language", "Sentiment", "Confidence"],
|
| 184 |
+
label="🧾 Sentiment Logs", interactive=False
|
| 185 |
)
|
| 186 |
|
| 187 |
btn_analyze.click(analyze_sentiment,
|
|
|
|
| 191 |
btn_show.click(show_logs, outputs=[logs_df])
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
demo.launch()
|