Spaces:
Build error
Build error
update app
Browse files
app.py
CHANGED
|
@@ -5,9 +5,7 @@ import json
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
-
from
|
| 9 |
-
from io import BytesIO
|
| 10 |
-
from typing import Optional, Tuple, Dict, Any, Iterable
|
| 11 |
|
| 12 |
import gradio as gr
|
| 13 |
import spaces
|
|
@@ -15,50 +13,42 @@ import torch
|
|
| 15 |
import numpy as np
|
| 16 |
from PIL import Image
|
| 17 |
import cv2
|
| 18 |
-
import requests
|
| 19 |
-
import fitz
|
| 20 |
|
| 21 |
from transformers import (
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
AutoProcessor,
|
| 24 |
TextIteratorStreamer,
|
| 25 |
)
|
| 26 |
from transformers.image_utils import load_image
|
| 27 |
-
|
| 28 |
from gradio.themes import Soft
|
| 29 |
from gradio.themes.utils import colors, fonts, sizes
|
| 30 |
|
| 31 |
# --- Theme and CSS Definition ---
|
| 32 |
|
| 33 |
-
# Define the
|
| 34 |
-
colors.
|
| 35 |
-
name="
|
| 36 |
-
c50="#
|
| 37 |
-
c100="#
|
| 38 |
-
c200="#
|
| 39 |
-
c300="#
|
| 40 |
-
c400="#
|
| 41 |
-
c500="#
|
| 42 |
-
c600="#
|
| 43 |
-
c700="#
|
| 44 |
-
c800="#
|
| 45 |
-
c900="#
|
| 46 |
-
c950="#
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
colors.red_gray = colors.Color(
|
| 50 |
-
name="red_gray",
|
| 51 |
-
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
|
| 52 |
-
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
|
| 53 |
-
c800="#732d2d", c900="#5f2626", c950="#4d2020",
|
| 54 |
)
|
| 55 |
|
| 56 |
-
class
|
| 57 |
def __init__(
|
| 58 |
self,
|
| 59 |
*,
|
| 60 |
primary_hue: colors.Color | str = colors.gray,
|
| 61 |
-
secondary_hue: colors.Color | str = colors.
|
| 62 |
neutral_hue: colors.Color | str = colors.slate,
|
| 63 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 64 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
@@ -77,92 +67,24 @@ class ThistleTheme(Soft):
|
|
| 77 |
font_mono=font_mono,
|
| 78 |
)
|
| 79 |
super().set(
|
| 80 |
-
background_fill_primary="*primary_50",
|
| 81 |
-
background_fill_primary_dark="*primary_900",
|
| 82 |
-
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 83 |
-
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 84 |
-
button_primary_text_color="black",
|
| 85 |
-
button_primary_text_color_hover="white",
|
| 86 |
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)",
|
| 87 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
button_secondary_text_color="black",
|
| 91 |
-
button_secondary_text_color_hover="white",
|
| 92 |
-
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 93 |
-
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 94 |
-
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 95 |
-
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 96 |
-
slider_color="*secondary_400",
|
| 97 |
-
slider_color_dark="*secondary_600",
|
| 98 |
block_title_text_weight="600",
|
| 99 |
-
block_border_width="
|
| 100 |
block_shadow="*shadow_drop_lg",
|
| 101 |
-
button_primary_shadow="*shadow_drop_lg",
|
| 102 |
-
button_large_padding="11px",
|
| 103 |
-
color_accent_soft="*primary_100",
|
| 104 |
-
block_label_background_fill="*primary_200",
|
| 105 |
)
|
| 106 |
|
| 107 |
# Instantiate the new theme
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
css = """
|
| 111 |
-
#main-title h1 {
|
| 112 |
-
font-size: 2.3em !important;
|
| 113 |
-
}
|
| 114 |
-
#output-title h2 {
|
| 115 |
-
font-size: 2.1em !important;
|
| 116 |
-
}
|
| 117 |
-
:root {
|
| 118 |
-
--color-grey-50: #f9fafb;
|
| 119 |
-
--banner-background: var(--secondary-400);
|
| 120 |
-
--banner-text-color: var(--primary-100);
|
| 121 |
-
--banner-background-dark: var(--secondary-800);
|
| 122 |
-
--banner-text-color-dark: var(--primary-100);
|
| 123 |
-
--banner-chrome-height: calc(16px + 43px);
|
| 124 |
-
--chat-chrome-height-wide-no-banner: 320px;
|
| 125 |
-
--chat-chrome-height-narrow-no-banner: 450px;
|
| 126 |
-
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
|
| 127 |
-
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
|
| 128 |
-
}
|
| 129 |
-
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
|
| 130 |
-
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
|
| 131 |
-
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
|
| 132 |
-
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
|
| 133 |
-
.toast-body { background-color: var(--color-grey-50); }
|
| 134 |
-
.html-container:has(.css-styles) { padding: 0; margin: 0; }
|
| 135 |
-
.css-styles { height: 0; }
|
| 136 |
-
.model-message { text-align: end; }
|
| 137 |
-
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
|
| 138 |
-
.user-input-container .multimodal-textbox{ border: none !important; }
|
| 139 |
-
.control-button { height: 51px; }
|
| 140 |
-
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
|
| 141 |
-
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
|
| 142 |
-
.opt-out-message { top: 8px; }
|
| 143 |
-
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
|
| 144 |
-
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
|
| 145 |
-
div.no-padding { padding: 0 !important; }
|
| 146 |
-
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
|
| 147 |
-
@media (max-width: 1024px) {
|
| 148 |
-
.responsive-row { flex-direction: column; }
|
| 149 |
-
.model-message { text-align: start; font-size: 10px !important; }
|
| 150 |
-
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 151 |
-
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
|
| 152 |
-
}
|
| 153 |
-
@media (max-width: 400px) {
|
| 154 |
-
.responsive-row { flex-direction: column; }
|
| 155 |
-
.model-message { text-align: start; font-size: 10px !important; }
|
| 156 |
-
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 157 |
-
div.block.chatbot { max-height: 360px !important; }
|
| 158 |
-
}
|
| 159 |
-
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
|
| 160 |
-
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
|
| 161 |
-
"""
|
| 162 |
|
| 163 |
-
|
|
|
|
| 164 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
|
| 167 |
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 168 |
print("torch.__version__ =", torch.__version__)
|
|
@@ -172,127 +94,129 @@ print("cuda device count:", torch.cuda.device_count())
|
|
| 172 |
if torch.cuda.is_available():
|
| 173 |
print("current device:", torch.cuda.current_device())
|
| 174 |
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
|
|
|
| 175 |
print("Using device:", device)
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
trust_remote_code=True,
|
| 182 |
-
|
| 183 |
).to(device).eval()
|
| 184 |
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
def downsample_video(video_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
vidcap = cv2.VideoCapture(video_path)
|
| 199 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
| 200 |
frames = []
|
| 201 |
-
frame_indices = np.linspace(0, total_frames - 1,
|
| 202 |
for i in frame_indices:
|
| 203 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 204 |
success, image = vidcap.read()
|
| 205 |
if success:
|
| 206 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 207 |
pil_image = Image.fromarray(image)
|
| 208 |
-
|
|
|
|
| 209 |
vidcap.release()
|
| 210 |
return frames
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
state["pages"] = pages
|
| 239 |
-
state["total_pages"] = len(pages)
|
| 240 |
-
page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
|
| 241 |
-
return pages[0], state, page_info_html
|
| 242 |
-
except Exception as e:
|
| 243 |
-
return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'
|
| 244 |
-
|
| 245 |
-
def navigate_pdf_page(direction: str, state: Dict[str, Any]):
|
| 246 |
-
if not state or not state["pages"]:
|
| 247 |
-
return None, state, '<div style="text-align:center;">No file loaded</div>'
|
| 248 |
-
current_index = state["current_page_index"]
|
| 249 |
-
total_pages = state["total_pages"]
|
| 250 |
-
if direction == "prev":
|
| 251 |
-
new_index = max(0, current_index - 1)
|
| 252 |
-
elif direction == "next":
|
| 253 |
-
new_index = min(total_pages - 1, current_index + 1)
|
| 254 |
else:
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
image_preview = state["pages"][new_index]
|
| 258 |
-
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 259 |
-
return image_preview, state, page_info_html
|
| 260 |
|
| 261 |
-
@spaces.GPU
|
| 262 |
-
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 263 |
if image is None:
|
| 264 |
yield "Please upload an image.", "Please upload an image."
|
| 265 |
return
|
| 266 |
-
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
|
| 267 |
-
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 268 |
-
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 269 |
-
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 270 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 271 |
-
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 272 |
-
thread.start()
|
| 273 |
-
buffer = ""
|
| 274 |
-
for new_text in streamer:
|
| 275 |
-
buffer += new_text
|
| 276 |
-
time.sleep(0.01)
|
| 277 |
-
yield buffer, buffer
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
| 296 |
thread.start()
|
| 297 |
buffer = ""
|
| 298 |
for new_text in streamer:
|
|
@@ -302,73 +226,69 @@ def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, tempe
|
|
| 302 |
yield buffer, buffer
|
| 303 |
|
| 304 |
@spaces.GPU
|
| 305 |
-
def
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
return
|
| 309 |
-
page_images = state["pages"]
|
| 310 |
-
full_response = ""
|
| 311 |
-
for i, image in enumerate(page_images):
|
| 312 |
-
page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
|
| 313 |
-
yield full_response + page_header, full_response + page_header
|
| 314 |
-
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
|
| 315 |
-
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 316 |
-
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 317 |
-
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 318 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 319 |
-
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 320 |
-
thread.start()
|
| 321 |
-
page_buffer = ""
|
| 322 |
-
for new_text in streamer:
|
| 323 |
-
page_buffer += new_text
|
| 324 |
-
yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
|
| 325 |
-
time.sleep(0.01)
|
| 326 |
-
full_response += page_header + page_buffer + "\n\n"
|
| 327 |
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
if image is None:
|
| 331 |
-
yield "Please upload an image to caption.", "Please upload an image to caption."
|
| 332 |
return
|
| 333 |
-
system_prompt = (
|
| 334 |
-
"You are an AI assistant that rigorously follows this response protocol: For every input image, your primary "
|
| 335 |
-
"task is to write a precise caption that captures the essence of the image in clear, concise, and contextually "
|
| 336 |
-
"accurate language. Along with the caption, provide a structured set of attributes describing the visual "
|
| 337 |
-
"elements, including details such as objects, people, actions, colors, environment, mood, and other notable "
|
| 338 |
-
"characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or "
|
| 339 |
-
"subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; "
|
| 340 |
-
"only return the formatted caption, attributes, and class_name."
|
| 341 |
-
)
|
| 342 |
-
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
|
| 343 |
-
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 344 |
-
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 345 |
-
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 346 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 347 |
-
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 348 |
-
thread.start()
|
| 349 |
-
buffer = ""
|
| 350 |
-
for new_text in streamer:
|
| 351 |
-
buffer += new_text
|
| 352 |
-
time.sleep(0.01)
|
| 353 |
-
yield buffer, buffer
|
| 354 |
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
yield "Please upload a GIF.", "Please upload a GIF."
|
| 359 |
-
return
|
| 360 |
-
frames = extract_gif_frames(gif_path)
|
| 361 |
-
if not frames:
|
| 362 |
-
yield "Could not process GIF.", "Could not process GIF."
|
| 363 |
-
return
|
| 364 |
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
| 365 |
-
for frame in
|
| 366 |
messages[0]["content"].insert(0, {"type": "image"})
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
thread.start()
|
| 373 |
buffer = ""
|
| 374 |
for new_text in streamer:
|
|
@@ -377,98 +297,85 @@ def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperatu
|
|
| 377 |
time.sleep(0.01)
|
| 378 |
yield buffer, buffer
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
gr.Markdown("# **
|
| 397 |
with gr.Row():
|
| 398 |
with gr.Column(scale=2):
|
| 399 |
with gr.Tabs():
|
| 400 |
with gr.TabItem("Image Inference"):
|
| 401 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 402 |
-
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 403 |
image_submit = gr.Button("Submit", variant="primary")
|
| 404 |
-
gr.Examples(
|
| 405 |
-
|
|
|
|
|
|
|
| 406 |
with gr.TabItem("Video Inference"):
|
| 407 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 408 |
-
video_upload = gr.Video(label="Video", height=290)
|
| 409 |
video_submit = gr.Button("Submit", variant="primary")
|
| 410 |
-
gr.Examples(
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
with gr.Column(scale=1):
|
| 415 |
-
pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
|
| 416 |
-
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 417 |
-
pdf_submit = gr.Button("Submit", variant="primary")
|
| 418 |
-
with gr.Column(scale=1):
|
| 419 |
-
pdf_preview_img = gr.Image(label="PDF Preview", height=290)
|
| 420 |
-
with gr.Row():
|
| 421 |
-
prev_page_btn = gr.Button("◀ Previous")
|
| 422 |
-
page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
|
| 423 |
-
next_page_btn = gr.Button("Next ▶")
|
| 424 |
-
gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
|
| 425 |
-
|
| 426 |
-
with gr.TabItem("Gif Inference"):
|
| 427 |
-
gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
|
| 428 |
-
gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
|
| 429 |
-
gif_submit = gr.Button("Submit", variant="primary")
|
| 430 |
-
gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
|
| 431 |
-
|
| 432 |
-
with gr.TabItem("Caption"):
|
| 433 |
-
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
|
| 434 |
-
caption_submit = gr.Button("Generate Caption", variant="primary")
|
| 435 |
-
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
|
| 436 |
-
|
| 437 |
with gr.Accordion("Advanced options", open=False):
|
| 438 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 439 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 440 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 441 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 442 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 443 |
-
|
| 444 |
with gr.Column(scale=3):
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 471 |
-
next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 472 |
|
| 473 |
if __name__ == "__main__":
|
| 474 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
|
|
|
| 5 |
import time
|
| 6 |
import asyncio
|
| 7 |
from threading import Thread
|
| 8 |
+
from typing import Iterable
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import gradio as gr
|
| 11 |
import spaces
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
import cv2
|
|
|
|
|
|
|
| 16 |
|
| 17 |
from transformers import (
|
| 18 |
+
Qwen2VLForConditionalGeneration,
|
| 19 |
+
Qwen2_5_VLForConditionalGeneration,
|
| 20 |
+
AutoModelForImageTextToText,
|
| 21 |
AutoProcessor,
|
| 22 |
TextIteratorStreamer,
|
| 23 |
)
|
| 24 |
from transformers.image_utils import load_image
|
|
|
|
| 25 |
from gradio.themes import Soft
|
| 26 |
from gradio.themes.utils import colors, fonts, sizes
|
| 27 |
|
| 28 |
# --- Theme and CSS Definition ---
|
| 29 |
|
| 30 |
+
# Define the new PaleGreen color palette
|
| 31 |
+
colors.pale_green = colors.Color(
|
| 32 |
+
name="pale_green",
|
| 33 |
+
c50="#F3FEF3",
|
| 34 |
+
c100="#E7FDE7",
|
| 35 |
+
c200="#D5FCD5",
|
| 36 |
+
c300="#C4FBC4",
|
| 37 |
+
c400="#B1FBAF",
|
| 38 |
+
c500="#98FB98", # PaleGreen base color
|
| 39 |
+
c600="#89E289",
|
| 40 |
+
c700="#7AC87A",
|
| 41 |
+
c800="#6BAF6B",
|
| 42 |
+
c900="#5B965B",
|
| 43 |
+
c950="#4C7D4C",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
+
class PaleGreenTheme(Soft):
|
| 47 |
def __init__(
|
| 48 |
self,
|
| 49 |
*,
|
| 50 |
primary_hue: colors.Color | str = colors.gray,
|
| 51 |
+
secondary_hue: colors.Color | str = colors.pale_green,
|
| 52 |
neutral_hue: colors.Color | str = colors.slate,
|
| 53 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 54 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
|
|
| 67 |
font_mono=font_mono,
|
| 68 |
)
|
| 69 |
super().set(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_500)",
|
| 71 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 72 |
+
button_primary_text_color="black",
|
| 73 |
+
slider_color="*secondary_500",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
block_title_text_weight="600",
|
| 75 |
+
block_border_width="2px",
|
| 76 |
block_shadow="*shadow_drop_lg",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
# Instantiate the new theme
|
| 80 |
+
pale_green_theme = PaleGreenTheme()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
# Constants for text generation
|
| 83 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 84 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 85 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
| 86 |
+
|
| 87 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 88 |
|
| 89 |
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 90 |
print("torch.__version__ =", torch.__version__)
|
|
|
|
| 94 |
if torch.cuda.is_available():
|
| 95 |
print("current device:", torch.cuda.current_device())
|
| 96 |
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
| 97 |
+
|
| 98 |
print("Using device:", device)
|
| 99 |
|
| 100 |
+
# --- Model Loading ---
|
| 101 |
+
# Load Nanonets-OCR-s
|
| 102 |
+
MODEL_ID_V = "nanonets/Nanonets-OCR-s"
|
| 103 |
+
processor_v = AutoProcessor.from_pretrained(MODEL_ID_V, trust_remote_code=True)
|
| 104 |
+
model_v = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 105 |
+
MODEL_ID_V,
|
| 106 |
trust_remote_code=True,
|
| 107 |
+
torch_dtype=torch.float16
|
| 108 |
).to(device).eval()
|
| 109 |
|
| 110 |
+
# Load Qwen2-VL-OCR-2B-Instruct
|
| 111 |
+
MODEL_ID_X = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
| 112 |
+
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
|
| 113 |
+
model_x = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 114 |
+
MODEL_ID_X,
|
| 115 |
+
trust_remote_code=True,
|
| 116 |
+
torch_dtype=torch.float16
|
| 117 |
+
).to(device).eval()
|
| 118 |
+
|
| 119 |
+
# Load Aya-Vision-8b
|
| 120 |
+
MODEL_ID_A = "CohereForAI/aya-vision-8b"
|
| 121 |
+
processor_a = AutoProcessor.from_pretrained(MODEL_ID_A, trust_remote_code=True)
|
| 122 |
+
model_a = AutoModelForImageTextToText.from_pretrained(
|
| 123 |
+
MODEL_ID_A,
|
| 124 |
+
trust_remote_code=True,
|
| 125 |
+
torch_dtype=torch.float16
|
| 126 |
+
).to(device).eval()
|
| 127 |
+
|
| 128 |
+
# Load olmOCR-7B-0725
|
| 129 |
+
MODEL_ID_W = "allenai/olmOCR-7B-0725"
|
| 130 |
+
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True)
|
| 131 |
+
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 132 |
+
MODEL_ID_W,
|
| 133 |
+
trust_remote_code=True,
|
| 134 |
+
torch_dtype=torch.float16
|
| 135 |
+
).to(device).eval()
|
| 136 |
+
|
| 137 |
+
# Load RolmOCR
|
| 138 |
+
MODEL_ID_M = "reducto/RolmOCR"
|
| 139 |
+
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
|
| 140 |
+
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 141 |
+
MODEL_ID_M,
|
| 142 |
+
trust_remote_code=True,
|
| 143 |
+
torch_dtype=torch.float16
|
| 144 |
+
).to(device).eval()
|
| 145 |
|
| 146 |
def downsample_video(video_path):
|
| 147 |
+
"""
|
| 148 |
+
Downsamples the video to evenly spaced frames.
|
| 149 |
+
Each frame is returned as a PIL image along with its timestamp.
|
| 150 |
+
"""
|
| 151 |
vidcap = cv2.VideoCapture(video_path)
|
| 152 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 153 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
| 154 |
frames = []
|
| 155 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
| 156 |
for i in frame_indices:
|
| 157 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 158 |
success, image = vidcap.read()
|
| 159 |
if success:
|
| 160 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 161 |
pil_image = Image.fromarray(image)
|
| 162 |
+
timestamp = round(i / fps, 2)
|
| 163 |
+
frames.append((pil_image, timestamp))
|
| 164 |
vidcap.release()
|
| 165 |
return frames
|
| 166 |
|
| 167 |
+
@spaces.GPU
|
| 168 |
+
def generate_image(model_name: str, text: str, image: Image.Image,
|
| 169 |
+
max_new_tokens: int = 1024,
|
| 170 |
+
temperature: float = 0.6,
|
| 171 |
+
top_p: float = 0.9,
|
| 172 |
+
top_k: int = 50,
|
| 173 |
+
repetition_penalty: float = 1.2):
|
| 174 |
+
"""
|
| 175 |
+
Generates responses using the selected model for image input.
|
| 176 |
+
Yields raw text and Markdown-formatted text.
|
| 177 |
+
"""
|
| 178 |
+
if model_name == "RolmOCR-7B":
|
| 179 |
+
processor = processor_m
|
| 180 |
+
model = model_m
|
| 181 |
+
elif model_name == "Qwen2-VL-OCR-2B":
|
| 182 |
+
processor = processor_x
|
| 183 |
+
model = model_x
|
| 184 |
+
elif model_name == "Nanonets-OCR-s":
|
| 185 |
+
processor = processor_v
|
| 186 |
+
model = model_v
|
| 187 |
+
elif model_name == "Aya-Vision-8B":
|
| 188 |
+
processor = processor_a
|
| 189 |
+
model = model_a
|
| 190 |
+
elif model_name == "olmOCR-7B-0725":
|
| 191 |
+
processor = processor_w
|
| 192 |
+
model = model_w
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
else:
|
| 194 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 195 |
+
return
|
|
|
|
|
|
|
|
|
|
| 196 |
|
|
|
|
|
|
|
| 197 |
if image is None:
|
| 198 |
yield "Please upload an image.", "Please upload an image."
|
| 199 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
messages = [{
|
| 202 |
+
"role": "user",
|
| 203 |
+
"content": [
|
| 204 |
+
{"type": "image"},
|
| 205 |
+
{"type": "text", "text": text},
|
| 206 |
+
]
|
| 207 |
+
}]
|
| 208 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 209 |
+
inputs = processor(
|
| 210 |
+
text=[prompt_full],
|
| 211 |
+
images=[image],
|
| 212 |
+
return_tensors="pt",
|
| 213 |
+
padding=True,
|
| 214 |
+
truncation=True,
|
| 215 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 216 |
+
).to(device)
|
| 217 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 218 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 219 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 220 |
thread.start()
|
| 221 |
buffer = ""
|
| 222 |
for new_text in streamer:
|
|
|
|
| 226 |
yield buffer, buffer
|
| 227 |
|
| 228 |
@spaces.GPU
|
| 229 |
+
def generate_video(model_name: str, text: str, video_path: str,
|
| 230 |
+
max_new_tokens: int = 1024,
|
| 231 |
+
temperature: float = 0.6,
|
| 232 |
+
top_p: float = 0.9,
|
| 233 |
+
top_k: int = 50,
|
| 234 |
+
repetition_penalty: float = 1.2):
|
| 235 |
+
"""
|
| 236 |
+
Generates responses using the selected model for video input.
|
| 237 |
+
Yields raw text and Markdown-formatted text.
|
| 238 |
+
"""
|
| 239 |
+
if model_name == "RolmOCR-7B":
|
| 240 |
+
processor = processor_m
|
| 241 |
+
model = model_m
|
| 242 |
+
elif model_name == "Qwen2-VL-OCR-2B":
|
| 243 |
+
processor = processor_x
|
| 244 |
+
model = model_x
|
| 245 |
+
elif model_name == "Nanonets-OCR-s":
|
| 246 |
+
processor = processor_v
|
| 247 |
+
model = model_v
|
| 248 |
+
elif model_name == "Aya-Vision-8B":
|
| 249 |
+
processor = processor_a
|
| 250 |
+
model = model_a
|
| 251 |
+
elif model_name == "olmOCR-7B-0725":
|
| 252 |
+
processor = processor_w
|
| 253 |
+
model = model_w
|
| 254 |
+
else:
|
| 255 |
+
yield "Invalid model selected.", "Invalid model selected."
|
| 256 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
+
if video_path is None:
|
| 259 |
+
yield "Please upload a video.", "Please upload a video."
|
|
|
|
|
|
|
| 260 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
+
frames_with_ts = downsample_video(video_path)
|
| 263 |
+
images_for_processor = [frame for frame, ts in frames_with_ts]
|
| 264 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
| 266 |
+
for frame in images_for_processor:
|
| 267 |
messages[0]["content"].insert(0, {"type": "image"})
|
| 268 |
+
|
| 269 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 270 |
+
|
| 271 |
+
inputs = processor(
|
| 272 |
+
text=[prompt_full],
|
| 273 |
+
images=images_for_processor,
|
| 274 |
+
return_tensors="pt",
|
| 275 |
+
padding=True,
|
| 276 |
+
truncation=True,
|
| 277 |
+
max_length=MAX_INPUT_TOKEN_LENGTH
|
| 278 |
+
).to(device)
|
| 279 |
+
|
| 280 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
| 281 |
+
generation_kwargs = {
|
| 282 |
+
**inputs,
|
| 283 |
+
"streamer": streamer,
|
| 284 |
+
"max_new_tokens": max_new_tokens,
|
| 285 |
+
"do_sample": True,
|
| 286 |
+
"temperature": temperature,
|
| 287 |
+
"top_p": top_p,
|
| 288 |
+
"top_k": top_k,
|
| 289 |
+
"repetition_penalty": repetition_penalty,
|
| 290 |
+
}
|
| 291 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 292 |
thread.start()
|
| 293 |
buffer = ""
|
| 294 |
for new_text in streamer:
|
|
|
|
| 297 |
time.sleep(0.01)
|
| 298 |
yield buffer, buffer
|
| 299 |
|
| 300 |
+
# Define examples for image and video inference
|
| 301 |
+
image_examples = [
|
| 302 |
+
["Extract the full page.", "images/ocr.png"],
|
| 303 |
+
["Extract the content.", "images/4.png"],
|
| 304 |
+
["Explain the scene.", "images/3.jpg"],
|
| 305 |
+
["Convert this page to doc [table] precisely for markdown.", "images/0.png"],
|
| 306 |
+
["Perform OCR on the Image.", "images/1.jpg"],
|
| 307 |
+
["Extract the table content.", "images/2.png"]
|
| 308 |
+
]
|
| 309 |
+
|
| 310 |
+
video_examples = [
|
| 311 |
+
["Explain the Ad in Detail.", "videos/1.mp4"],
|
| 312 |
+
["Identify the main actions in the cartoon video.", "videos/2.mp4"]
|
| 313 |
+
]
|
| 314 |
+
|
| 315 |
+
css = """
|
| 316 |
+
#main-title h1 {
|
| 317 |
+
font-size: 2.3em !important;
|
| 318 |
+
}
|
| 319 |
+
#output-title h2 {
|
| 320 |
+
font-size: 2.1em !important;
|
| 321 |
+
}
|
| 322 |
+
"""
|
| 323 |
|
| 324 |
+
# Create the Gradio Interface
|
| 325 |
+
with gr.Blocks(css=css, theme=pale_green_theme) as demo:
|
| 326 |
+
gr.Markdown("# **Multimodal OCR**", elem_id="main-title")
|
| 327 |
with gr.Row():
|
| 328 |
with gr.Column(scale=2):
|
| 329 |
with gr.Tabs():
|
| 330 |
with gr.TabItem("Image Inference"):
|
| 331 |
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 332 |
+
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
|
| 333 |
image_submit = gr.Button("Submit", variant="primary")
|
| 334 |
+
gr.Examples(
|
| 335 |
+
examples=image_examples,
|
| 336 |
+
inputs=[image_query, image_upload]
|
| 337 |
+
)
|
| 338 |
with gr.TabItem("Video Inference"):
|
| 339 |
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 340 |
+
video_upload = gr.Video(label="Upload Video", height=290)
|
| 341 |
video_submit = gr.Button("Submit", variant="primary")
|
| 342 |
+
gr.Examples(
|
| 343 |
+
examples=video_examples,
|
| 344 |
+
inputs=[video_query, video_upload]
|
| 345 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
with gr.Accordion("Advanced options", open=False):
|
| 347 |
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 348 |
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 349 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 350 |
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 351 |
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 352 |
+
|
| 353 |
with gr.Column(scale=3):
|
| 354 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 355 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=11, show_copy_button=True)
|
| 356 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 357 |
+
markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
|
| 358 |
+
{"left": "$$", "right": "$$", "display": True},
|
| 359 |
+
{"left": "$", "right": "$", "display": False}
|
| 360 |
+
])
|
| 361 |
+
|
| 362 |
+
model_choice = gr.Radio(
|
| 363 |
+
choices=["olmOCR-7B-0725", "Nanonets-OCR-s", "RolmOCR-7B",
|
| 364 |
+
"Aya-Vision-8B", "Qwen2-VL-OCR-2B"],
|
| 365 |
+
label="Select Model",
|
| 366 |
+
value="olmOCR-7B-0725"
|
| 367 |
+
)
|
| 368 |
+
|
| 369 |
+
image_submit.click(
|
| 370 |
+
fn=generate_image,
|
| 371 |
+
inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 372 |
+
outputs=[output, markdown_output]
|
| 373 |
+
)
|
| 374 |
+
video_submit.click(
|
| 375 |
+
fn=generate_video,
|
| 376 |
+
inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 377 |
+
outputs=[output, markdown_output]
|
| 378 |
+
)
|
|
|
|
|
|
|
| 379 |
|
| 380 |
if __name__ == "__main__":
|
| 381 |
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|