Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import random | |
| import torch | |
| import os | |
| from torch import inference_mode | |
| from tempfile import NamedTemporaryFile | |
| import numpy as np | |
| from models import load_model | |
| import utils | |
| from inversion_utils import inversion_forward_process, inversion_reverse_process | |
| # current_loaded_model = "cvssp/audioldm2-music" | |
| # # current_loaded_model = "cvssp/audioldm2-music" | |
| # ldm_stable = load_model(current_loaded_model, device, 200) # deafult model | |
| LDM2 = "cvssp/audioldm2" | |
| MUSIC = "cvssp/audioldm2-music" | |
| LDM2_LARGE = "cvssp/audioldm2-large" | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| ldm2 = load_model(model_id=LDM2, device=device) | |
| ldm2_large = load_model(model_id=LDM2_LARGE, device=device) | |
| ldm2_music = load_model(model_id=MUSIC, device=device) | |
| def randomize_seed_fn(seed, randomize_seed): | |
| if randomize_seed: | |
| seed = random.randint(0, np.iinfo(np.int32).max) | |
| torch.manual_seed(seed) | |
| return seed | |
| def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src): # , ldm_stable): | |
| ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device) | |
| with inference_mode(): | |
| w0 = ldm_stable.vae_encode(x0) | |
| # find Zs and wts - forward process | |
| _, zs, wts = inversion_forward_process(ldm_stable, w0, etas=1, | |
| prompts=[prompt_src], | |
| cfg_scales=[cfg_scale_src], | |
| prog_bar=True, | |
| num_inference_steps=num_diffusion_steps, | |
| numerical_fix=True) | |
| return zs, wts | |
| def sample(ldm_stable, zs, wts, steps, prompt_tar, tstart, cfg_scale_tar): # , ldm_stable): | |
| # reverse process (via Zs and wT) | |
| tstart = torch.tensor(tstart, dtype=torch.int) | |
| skip = steps - tstart | |
| w0, _ = inversion_reverse_process(ldm_stable, xT=wts, skips=steps - skip, | |
| etas=1., prompts=[prompt_tar], | |
| neg_prompts=[""], cfg_scales=[cfg_scale_tar], | |
| prog_bar=True, | |
| zs=zs[:int(steps - skip)]) | |
| # vae decode image | |
| with inference_mode(): | |
| x0_dec = ldm_stable.vae_decode(w0) | |
| if x0_dec.dim() < 4: | |
| x0_dec = x0_dec[None, :, :, :] | |
| with torch.no_grad(): | |
| audio = ldm_stable.decode_to_mel(x0_dec) | |
| return (16000, audio.squeeze().cpu().numpy()) | |
| def edit(cache_dir, | |
| input_audio, | |
| model_id: str, | |
| do_inversion: bool, | |
| wtszs_file: str, | |
| # wts: gr.State, zs: gr.State, | |
| saved_inv_model: str, | |
| source_prompt="", | |
| target_prompt="", | |
| steps=200, | |
| cfg_scale_src=3.5, | |
| cfg_scale_tar=12, | |
| t_start=45, | |
| randomize_seed=True): | |
| print(model_id) | |
| if model_id == LDM2: | |
| ldm_stable = ldm2 | |
| elif model_id == LDM2_LARGE: | |
| ldm_stable = ldm2_large | |
| else: # MUSIC | |
| ldm_stable = ldm2_music | |
| # If the inversion was done for a different model, we need to re-run the inversion | |
| if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id): | |
| do_inversion = True | |
| if input_audio is None: | |
| raise gr.Error('Input audio missing!') | |
| x0 = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device) | |
| if not (do_inversion or randomize_seed): | |
| if not os.path.exists(wtszs_file): | |
| do_inversion = True | |
| # Too much time has passed | |
| if do_inversion or randomize_seed: # always re-run inversion | |
| zs_tensor, wts_tensor = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt, | |
| num_diffusion_steps=steps, | |
| cfg_scale_src=cfg_scale_src) | |
| f = NamedTemporaryFile("wb", dir=cache_dir, suffix=".pth", delete=False) | |
| torch.save({'wts': wts_tensor, 'zs': zs_tensor}, f.name) | |
| wtszs_file = f.name | |
| # wtszs_file = gr.State(value=f.name) | |
| # wts = gr.State(value=wts_tensor) | |
| # zs = gr.State(value=zs_tensor) | |
| # demo.move_resource_to_block_cache(f.name) | |
| saved_inv_model = model_id | |
| do_inversion = False | |
| else: | |
| wtszs = torch.load(wtszs_file, map_location=device) | |
| # wtszs = torch.load(wtszs_file.f, map_location=device) | |
| wts_tensor = wtszs['wts'] | |
| zs_tensor = wtszs['zs'] | |
| # make sure t_start is in the right limit | |
| # t_start = change_tstart_range(t_start, steps) | |
| output = sample(ldm_stable, zs_tensor, wts_tensor, steps, prompt_tar=target_prompt, | |
| tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar) | |
| return output, wtszs_file, saved_inv_model, do_inversion | |
| def get_example(): | |
| case = [ | |
| ['Examples/Beethoven.wav', | |
| '', | |
| 'A recording of an arcade game soundtrack.', | |
| 45, | |
| 'cvssp/audioldm2-music', | |
| '27s', | |
| 'Examples/Beethoven_arcade.wav', | |
| ], | |
| ['Examples/Beethoven.wav', | |
| 'A high quality recording of wind instruments and strings playing.', | |
| 'A high quality recording of a piano playing.', | |
| 45, | |
| 'cvssp/audioldm2-music', | |
| '27s', | |
| 'Examples/Beethoven_piano.wav', | |
| ], | |
| ['Examples/ModalJazz.wav', | |
| 'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.', | |
| 'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.', | |
| 45, | |
| 'cvssp/audioldm2-music', | |
| '106s', | |
| 'Examples/ModalJazz_banjo.wav',], | |
| ['Examples/Cat.wav', | |
| '', | |
| 'A dog barking.', | |
| 75, | |
| 'cvssp/audioldm2-large', | |
| '10s', | |
| 'Examples/Cat_dog.wav',] | |
| ] | |
| return case | |
| intro = """ | |
| <h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> ZETA Editing 🎧 </h1> | |
| <h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2> | |
| <h3 style="margin-bottom: 10px; text-align: center;"> | |
| <a href="https://arxiv.org/abs/2402.10009">[Paper]</a> | | |
| <a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a> | | |
| <a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a> | |
| </h3> | |
| <p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em"> | |
| For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. | |
| <a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true"> | |
| <img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" ></a> | |
| </p> | |
| """ | |
| help = """ | |
| <div style="font-size:medium"> | |
| <b>Instructions:</b><br> | |
| <ul style="line-height: normal"> | |
| <li>You must provide an input audio and a target prompt to edit the audio. </li> | |
| <li>T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance. | |
| Lower value -> favor fidelity. Higher value -> apply a stronger edit.</li> | |
| <li>Make sure that you use an AudioLDM2 version that is suitable for your input audio. | |
| For example, use the music version for music and the large version for general audio. | |
| </li> | |
| <li>You can additionally provide a source prompt to guide even further the editing process.</li> | |
| <li>Longer input will take more time.</li> | |
| <li><strong>Unlimited length</strong>: This space automatically trims input audio to a maximum length of 30 seconds. | |
| For unlimited length, duplicated the space, and remove the trimming by changing the code. | |
| Specifically, in the <code style="display:inline; background-color: lightgrey; ">load_audio</code> function in the <code style="display:inline; background-color: lightgrey; ">utils.py</code> file, | |
| change <code style="display:inline; background-color: lightgrey; ">duration = min(audioldm.utils.get_duration(audio_path), 30)</code> to | |
| <code style="display:inline; background-color: lightgrey; ">duration = audioldm.utils.get_duration(audio_path)</code>. | |
| </ul> | |
| </div> | |
| """ | |
| with gr.Blocks(css='style.css', delete_cache=(3600, 3600)) as demo: | |
| def reset_do_inversion(do_inversion_user, do_inversion): | |
| # do_inversion = gr.State(value=True) | |
| do_inversion = True | |
| do_inversion_user = True | |
| return do_inversion_user, do_inversion | |
| # handle the case where the user clicked the button but the inversion was not done | |
| def clear_do_inversion_user(do_inversion_user): | |
| do_inversion_user = False | |
| return do_inversion_user | |
| def post_match_do_inversion(do_inversion_user, do_inversion): | |
| if do_inversion_user: | |
| do_inversion = True | |
| do_inversion_user = False | |
| return do_inversion_user, do_inversion | |
| gr.HTML(intro) | |
| # wts = gr.State() | |
| # zs = gr.State() | |
| wtszs = gr.State() | |
| cache_dir = gr.State(demo.GRADIO_CACHE) | |
| saved_inv_model = gr.State() | |
| # current_loaded_model = gr.State(value="cvssp/audioldm2-music") | |
| # ldm_stable = load_model("cvssp/audioldm2-music", device, 200) | |
| # ldm_stable = gr.State(value=ldm_stable) | |
| do_inversion = gr.State(value=True) # To save some runtime when editing the same thing over and over | |
| do_inversion_user = gr.State(value=False) | |
| with gr.Group(): | |
| gr.Markdown("💡 **note**: input longer than **30 sec** is automatically trimmed (for unlimited input, see the Help section below)") | |
| with gr.Row(): | |
| input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input Audio", | |
| interactive=True, scale=1) | |
| output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1) | |
| with gr.Row(): | |
| tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output", | |
| placeholder="a recording of a happy upbeat arcade game soundtrack", | |
| lines=2, interactive=True) | |
| with gr.Row(): | |
| t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3, | |
| info="Lower T-start -> closer to original audio. Higher T-start -> stronger edit.") | |
| # model_id = gr.Radio(label="AudioLDM2 Version", | |
| model_id = gr.Dropdown(label="AudioLDM2 Version", | |
| choices=["cvssp/audioldm2", | |
| "cvssp/audioldm2-large", | |
| "cvssp/audioldm2-music"], | |
| info="Choose a checkpoint suitable for your intended audio and edit", | |
| value="cvssp/audioldm2-music", interactive=True, type="value", scale=2) | |
| with gr.Row(): | |
| with gr.Column(): | |
| submit = gr.Button("Edit") | |
| with gr.Accordion("More Options", open=False): | |
| with gr.Row(): | |
| src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True, | |
| info="Optional: Describe the original audio input", | |
| placeholder="A recording of a happy upbeat classical music piece",) | |
| with gr.Row(): | |
| cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None, | |
| label="Source Guidance Scale", interactive=True, scale=1) | |
| cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None, | |
| label="Target Guidance Scale", interactive=True, scale=1) | |
| steps = gr.Number(value=50, step=1, minimum=20, maximum=300, | |
| info="Higher values (e.g. 200) yield higher-quality generation.", | |
| label="Num Diffusion Steps", interactive=True, scale=1) | |
| with gr.Row(): | |
| seed = gr.Number(value=0, precision=0, label="Seed", interactive=True) | |
| randomize_seed = gr.Checkbox(label='Randomize seed', value=False) | |
| length = gr.Number(label="Length", interactive=False, visible=False) | |
| with gr.Accordion("Help💡", open=False): | |
| gr.HTML(help) | |
| submit.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=[seed], queue=False).then( | |
| fn=clear_do_inversion_user, inputs=[do_inversion_user], outputs=[do_inversion_user]).then( | |
| fn=edit, | |
| inputs=[cache_dir, | |
| input_audio, | |
| model_id, | |
| do_inversion, | |
| # current_loaded_model, ldm_stable, | |
| # wts, zs, | |
| wtszs, | |
| saved_inv_model, | |
| src_prompt, | |
| tar_prompt, | |
| steps, | |
| cfg_scale_src, | |
| cfg_scale_tar, | |
| t_start, | |
| randomize_seed | |
| ], | |
| outputs=[output_audio, wtszs, | |
| saved_inv_model, do_inversion] # , current_loaded_model, ldm_stable], | |
| ).then(post_match_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion] | |
| ).then(lambda x: (demo.temp_file_sets.append(set([str(gr.utils.abspath(x))])) if type(x) is str else None), | |
| inputs=wtszs) | |
| # demo.move_resource_to_block_cache(wtszs.value) | |
| # If sources changed we have to rerun inversion | |
| input_audio.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]) | |
| src_prompt.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]) | |
| model_id.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]) | |
| cfg_scale_src.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]) | |
| steps.change(fn=reset_do_inversion, inputs=[do_inversion_user, do_inversion], outputs=[do_inversion_user, do_inversion]) | |
| gr.Examples( | |
| label="Examples", | |
| examples=get_example(), | |
| inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio], | |
| outputs=[output_audio] | |
| ) | |
| demo.queue() | |
| demo.launch() | |