Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
from PIL import Image, ImageEnhance, ImageOps
|
| 2 |
import string
|
| 3 |
-
from collections import Counter
|
| 4 |
from itertools import tee, count
|
| 5 |
import pytesseract
|
| 6 |
from pytesseract import Output
|
| 7 |
import json
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
# import matplotlib.pyplot as plt
|
| 10 |
import cv2
|
| 11 |
import numpy as np
|
|
@@ -14,35 +15,65 @@ from transformers import TableTransformerForObjectDetection
|
|
| 14 |
import torch
|
| 15 |
import gradio as gr
|
| 16 |
|
| 17 |
-
def plot_results_detection(model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
| 18 |
-
plt.imshow(image)
|
| 19 |
-
ax = plt.gca()
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
| 30 |
-
|
| 31 |
-
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
| 32 |
-
|
| 33 |
cropped_img_list = []
|
| 34 |
|
| 35 |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 36 |
|
| 37 |
-
xmin, ymin, xmax, ymax =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 39 |
cropped_img_list.append(cropped_img)
|
| 40 |
return cropped_img_list
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
Image padding as part of TSR pre-processing to prevent missing table edges
|
| 45 |
-
|
| 46 |
width, height = pil_img.size
|
| 47 |
new_width = width + right + left
|
| 48 |
new_height = height + top + bottom
|
|
@@ -50,15 +81,18 @@ def add_padding(pil_img, top, right, bottom, left, color=(255,255,255)):
|
|
| 50 |
result.paste(pil_img, (left, top))
|
| 51 |
return result
|
| 52 |
|
|
|
|
| 53 |
def table_detector(image, THRESHOLD_PROBA):
|
| 54 |
-
|
| 55 |
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
| 56 |
-
|
| 57 |
|
| 58 |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
| 59 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 60 |
|
| 61 |
-
model = TableTransformerForObjectDetection.from_pretrained(
|
|
|
|
|
|
|
| 62 |
|
| 63 |
with torch.no_grad():
|
| 64 |
outputs = model(**encoding)
|
|
@@ -68,20 +102,22 @@ def table_detector(image, THRESHOLD_PROBA):
|
|
| 68 |
|
| 69 |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 70 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 71 |
-
bboxes_scaled = postprocessed_outputs[0][
|
| 72 |
|
| 73 |
return (model, probas[keep], bboxes_scaled)
|
| 74 |
|
| 75 |
|
| 76 |
def table_struct_recog(image, THRESHOLD_PROBA):
|
| 77 |
-
|
| 78 |
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
| 79 |
-
|
| 80 |
|
| 81 |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
| 82 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 83 |
|
| 84 |
-
model = TableTransformerForObjectDetection.from_pretrained(
|
|
|
|
|
|
|
| 85 |
with torch.no_grad():
|
| 86 |
outputs = model(**encoding)
|
| 87 |
|
|
@@ -90,16 +126,19 @@ def table_struct_recog(image, THRESHOLD_PROBA):
|
|
| 90 |
|
| 91 |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 92 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 93 |
-
bboxes_scaled = postprocessed_outputs[0][
|
| 94 |
|
| 95 |
return (model, probas[keep], bboxes_scaled)
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
| 99 |
-
|
| 100 |
Co-ordinates are adjusted here by 3 'pixels'
|
| 101 |
To plot table pillow image and the TSR bounding boxes on the table
|
| 102 |
-
|
| 103 |
# plt.figure(figsize=(32,20))
|
| 104 |
# plt.imshow(pil_img)
|
| 105 |
# ax = plt.gca()
|
|
@@ -108,33 +147,55 @@ def generate_structure(model, pil_img, prob, boxes, expand_rowcol_bbox_top, expa
|
|
| 108 |
idx = 0
|
| 109 |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 110 |
|
| 111 |
-
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
| 112 |
cl = p.argmax()
|
| 113 |
class_text = model.config.id2label[cl.item()]
|
| 114 |
-
text = f
|
| 115 |
# or (class_text == 'table column')
|
| 116 |
# if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
if class_text ==
|
| 121 |
-
rows[
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
idx += 1
|
| 126 |
|
| 127 |
# plt.axis('on')
|
| 128 |
return rows, cols
|
| 129 |
|
| 130 |
-
|
|
|
|
| 131 |
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
| 132 |
-
rows_ = {
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
return rows_, cols_
|
| 136 |
|
| 137 |
-
|
|
|
|
| 138 |
|
| 139 |
for k, v in rows.items():
|
| 140 |
xmin, ymin, xmax, ymax = v
|
|
@@ -148,12 +209,19 @@ def individual_table_featuresv2(pil_img, rows:dict, cols:dict):
|
|
| 148 |
|
| 149 |
return rows, cols
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
Args:
|
| 154 |
Returns:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
cells_img = {}
|
| 158 |
header_idx = 0
|
| 159 |
row_idx = 0
|
|
@@ -181,7 +249,7 @@ def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand
|
|
| 181 |
# new_master_row[k_row] = v_row
|
| 182 |
######################################################
|
| 183 |
for k_row, v_row in new_master_row.items():
|
| 184 |
-
|
| 185 |
_, _, _, _, row_img = v_row
|
| 186 |
xmax, ymax = row_img.size
|
| 187 |
xa, ya, xb, yb = 0, 0, 0, ymax
|
|
@@ -201,31 +269,39 @@ def object_to_cellsv2(master_row:dict, cols:dict, expand_rowcol_bbox_top, expand
|
|
| 201 |
xb = xmax_col
|
| 202 |
if idx == 0:
|
| 203 |
xa = 0
|
| 204 |
-
if idx == len(new_cols)-1:
|
| 205 |
xb = xmax
|
| 206 |
xa, ya, xb, yb = xa, ya, xb, yb
|
| 207 |
|
| 208 |
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
| 209 |
row_img_list.append(row_img_cropped)
|
| 210 |
|
| 211 |
-
cells_img[k_row+
|
| 212 |
row_idx += 1
|
| 213 |
|
| 214 |
-
return cells_img, len(new_cols), len(new_master_row)-1
|
|
|
|
| 215 |
|
| 216 |
def pytess(cell_pil_img):
|
| 217 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
|
|
|
| 220 |
"""Make all the items unique by adding a suffix (1, 2, etc).
|
| 221 |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
| 222 |
`seq` is mutable sequence of strings.
|
| 223 |
`suffs` is an optional alternative suffix iterable.
|
| 224 |
"""
|
| 225 |
-
not_unique = [k for k,v in Counter(seq).items() if v>1]
|
| 226 |
|
| 227 |
-
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
| 228 |
-
for idx,s in enumerate(seq):
|
| 229 |
try:
|
| 230 |
suffix = str(next(suff_gens[s]))
|
| 231 |
except KeyError:
|
|
@@ -235,34 +311,36 @@ def uniquify(seq, suffs = count(1)):
|
|
| 235 |
|
| 236 |
return seq
|
| 237 |
|
|
|
|
| 238 |
def clean_dataframe(df):
|
| 239 |
-
|
| 240 |
Remove irrelevant symbols that appear with tesseractOCR
|
| 241 |
-
|
| 242 |
# df.columns = [col.replace('|', '') for col in df.columns]
|
| 243 |
|
| 244 |
for col in df.columns:
|
| 245 |
|
| 246 |
-
df[col]=df[col].str.replace("'",
|
| 247 |
-
df[col]=df[col].str.replace('"',
|
| 248 |
-
df[col]=df[col].str.replace(
|
| 249 |
-
df[col]=df[col].str.replace(
|
| 250 |
-
df[col]=df[col].str.replace(
|
| 251 |
-
df[col]=df[col].str.replace(
|
| 252 |
-
df[col]=df[col].str.replace(
|
| 253 |
return df
|
| 254 |
|
| 255 |
-
|
| 256 |
-
|
|
|
|
| 257 |
Args:
|
| 258 |
cells_pytess_result: list of strings, each element representing a cell in a table
|
| 259 |
max_cols, max_rows: number of columns and rows
|
| 260 |
Returns:
|
| 261 |
-
dataframe : final dataframe after all pre-processing
|
| 262 |
-
|
| 263 |
|
| 264 |
headers = cells_pytess_result[:max_cols]
|
| 265 |
-
new_headers = uniquify(headers, (f
|
| 266 |
counter = 0
|
| 267 |
|
| 268 |
cells_list = cells_pytess_result[max_cols:]
|
|
@@ -274,10 +352,10 @@ def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_pa
|
|
| 274 |
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
| 275 |
cell_idx += 1
|
| 276 |
|
| 277 |
-
## To check if there are duplicate headers if result of uniquify+col == col
|
| 278 |
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
| 279 |
for x, col in zip(string.ascii_lowercase, new_headers):
|
| 280 |
-
if f
|
| 281 |
counter += 1
|
| 282 |
header_char_count = [len(col) for col in new_headers]
|
| 283 |
|
|
@@ -291,42 +369,93 @@ def create_dataframe(cells_pytess_result:list, max_cols:int, max_rows:int,csv_pa
|
|
| 291 |
|
| 292 |
return df
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
|
| 320 |
title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
|
| 321 |
description = "Demo for microsoft - table-transformer-detection + tesseract"
|
| 322 |
article = "<p style='text-align: center'></p>"
|
| 323 |
-
examples =[["image_0.png"]]
|
| 324 |
-
|
| 325 |
-
iface = gr.Interface(
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
iface.launch(debug=True)
|
|
|
|
|
|
| 1 |
from PIL import Image, ImageEnhance, ImageOps
|
| 2 |
import string
|
| 3 |
+
from collections import Counter
|
| 4 |
from itertools import tee, count
|
| 5 |
import pytesseract
|
| 6 |
from pytesseract import Output
|
| 7 |
import json
|
| 8 |
import pandas as pd
|
| 9 |
+
|
| 10 |
# import matplotlib.pyplot as plt
|
| 11 |
import cv2
|
| 12 |
import numpy as np
|
|
|
|
| 15 |
import torch
|
| 16 |
import gradio as gr
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
def plot_results_detection(
|
| 20 |
+
model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
|
| 21 |
+
):
|
| 22 |
+
plt.imshow(image)
|
| 23 |
+
ax = plt.gca()
|
| 24 |
+
|
| 25 |
+
for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
|
| 26 |
+
cl = p.argmax()
|
| 27 |
+
xmin, ymin, xmax, ymax = (
|
| 28 |
+
xmin - delta_xmin,
|
| 29 |
+
ymin - delta_ymin,
|
| 30 |
+
xmax + delta_xmax,
|
| 31 |
+
ymax + delta_ymax,
|
| 32 |
+
)
|
| 33 |
+
ax.add_patch(
|
| 34 |
+
plt.Rectangle(
|
| 35 |
+
(xmin, ymin),
|
| 36 |
+
xmax - xmin,
|
| 37 |
+
ymax - ymin,
|
| 38 |
+
fill=False,
|
| 39 |
+
color="red",
|
| 40 |
+
linewidth=3,
|
| 41 |
+
)
|
| 42 |
+
)
|
| 43 |
+
text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}"
|
| 44 |
+
ax.text(
|
| 45 |
+
xmin - 20,
|
| 46 |
+
ymin - 50,
|
| 47 |
+
text,
|
| 48 |
+
fontsize=10,
|
| 49 |
+
bbox=dict(facecolor="yellow", alpha=0.5),
|
| 50 |
+
)
|
| 51 |
+
plt.axis("off")
|
| 52 |
+
|
| 53 |
|
| 54 |
def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
|
| 55 |
+
"""
|
| 56 |
+
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
|
| 57 |
+
"""
|
| 58 |
cropped_img_list = []
|
| 59 |
|
| 60 |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 61 |
|
| 62 |
+
xmin, ymin, xmax, ymax = (
|
| 63 |
+
xmin - delta_xmin,
|
| 64 |
+
ymin - delta_ymin,
|
| 65 |
+
xmax + delta_xmax,
|
| 66 |
+
ymax + delta_ymax,
|
| 67 |
+
)
|
| 68 |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
|
| 69 |
cropped_img_list.append(cropped_img)
|
| 70 |
return cropped_img_list
|
| 71 |
|
| 72 |
+
|
| 73 |
+
def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)):
|
| 74 |
+
"""
|
| 75 |
Image padding as part of TSR pre-processing to prevent missing table edges
|
| 76 |
+
"""
|
| 77 |
width, height = pil_img.size
|
| 78 |
new_width = width + right + left
|
| 79 |
new_height = height + top + bottom
|
|
|
|
| 81 |
result.paste(pil_img, (left, top))
|
| 82 |
return result
|
| 83 |
|
| 84 |
+
|
| 85 |
def table_detector(image, THRESHOLD_PROBA):
|
| 86 |
+
"""
|
| 87 |
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
|
| 88 |
+
"""
|
| 89 |
|
| 90 |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
|
| 91 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 92 |
|
| 93 |
+
model = TableTransformerForObjectDetection.from_pretrained(
|
| 94 |
+
"microsoft/table-transformer-detection"
|
| 95 |
+
)
|
| 96 |
|
| 97 |
with torch.no_grad():
|
| 98 |
outputs = model(**encoding)
|
|
|
|
| 102 |
|
| 103 |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 104 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 105 |
+
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
|
| 106 |
|
| 107 |
return (model, probas[keep], bboxes_scaled)
|
| 108 |
|
| 109 |
|
| 110 |
def table_struct_recog(image, THRESHOLD_PROBA):
|
| 111 |
+
"""
|
| 112 |
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
|
| 113 |
+
"""
|
| 114 |
|
| 115 |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
|
| 116 |
encoding = feature_extractor(image, return_tensors="pt")
|
| 117 |
|
| 118 |
+
model = TableTransformerForObjectDetection.from_pretrained(
|
| 119 |
+
"microsoft/table-transformer-structure-recognition"
|
| 120 |
+
)
|
| 121 |
with torch.no_grad():
|
| 122 |
outputs = model(**encoding)
|
| 123 |
|
|
|
|
| 126 |
|
| 127 |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
|
| 128 |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
|
| 129 |
+
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
|
| 130 |
|
| 131 |
return (model, probas[keep], bboxes_scaled)
|
| 132 |
|
| 133 |
+
|
| 134 |
+
def generate_structure(
|
| 135 |
+
model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom
|
| 136 |
+
):
|
| 137 |
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
|
| 138 |
+
"""
|
| 139 |
Co-ordinates are adjusted here by 3 'pixels'
|
| 140 |
To plot table pillow image and the TSR bounding boxes on the table
|
| 141 |
+
"""
|
| 142 |
# plt.figure(figsize=(32,20))
|
| 143 |
# plt.imshow(pil_img)
|
| 144 |
# ax = plt.gca()
|
|
|
|
| 147 |
idx = 0
|
| 148 |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
|
| 149 |
|
| 150 |
+
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
|
| 151 |
cl = p.argmax()
|
| 152 |
class_text = model.config.id2label[cl.item()]
|
| 153 |
+
text = f"{class_text}: {p[cl]:0.2f}"
|
| 154 |
# or (class_text == 'table column')
|
| 155 |
# if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
|
| 156 |
+
# ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
|
| 157 |
+
# ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
|
| 158 |
+
|
| 159 |
+
if class_text == "table row":
|
| 160 |
+
rows["table row." + str(idx)] = (
|
| 161 |
+
xmin,
|
| 162 |
+
ymin - expand_rowcol_bbox_top,
|
| 163 |
+
xmax,
|
| 164 |
+
ymax + expand_rowcol_bbox_bottom,
|
| 165 |
+
)
|
| 166 |
+
if class_text == "table column":
|
| 167 |
+
cols["table column." + str(idx)] = (
|
| 168 |
+
xmin,
|
| 169 |
+
ymin - expand_rowcol_bbox_top,
|
| 170 |
+
xmax,
|
| 171 |
+
ymax + expand_rowcol_bbox_bottom,
|
| 172 |
+
)
|
| 173 |
|
| 174 |
idx += 1
|
| 175 |
|
| 176 |
# plt.axis('on')
|
| 177 |
return rows, cols
|
| 178 |
|
| 179 |
+
|
| 180 |
+
def sort_table_featuresv2(rows: dict, cols: dict):
|
| 181 |
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
|
| 182 |
+
rows_ = {
|
| 183 |
+
table_feature: (xmin, ymin, xmax, ymax)
|
| 184 |
+
for table_feature, (xmin, ymin, xmax, ymax) in sorted(
|
| 185 |
+
rows.items(), key=lambda tup: tup[1][1]
|
| 186 |
+
)
|
| 187 |
+
}
|
| 188 |
+
cols_ = {
|
| 189 |
+
table_feature: (xmin, ymin, xmax, ymax)
|
| 190 |
+
for table_feature, (xmin, ymin, xmax, ymax) in sorted(
|
| 191 |
+
cols.items(), key=lambda tup: tup[1][0]
|
| 192 |
+
)
|
| 193 |
+
}
|
| 194 |
|
| 195 |
return rows_, cols_
|
| 196 |
|
| 197 |
+
|
| 198 |
+
def individual_table_featuresv2(pil_img, rows: dict, cols: dict):
|
| 199 |
|
| 200 |
for k, v in rows.items():
|
| 201 |
xmin, ymin, xmax, ymax = v
|
|
|
|
| 209 |
|
| 210 |
return rows, cols
|
| 211 |
|
| 212 |
+
|
| 213 |
+
def object_to_cellsv2(
|
| 214 |
+
master_row: dict,
|
| 215 |
+
cols: dict,
|
| 216 |
+
expand_rowcol_bbox_top,
|
| 217 |
+
expand_rowcol_bbox_bottom,
|
| 218 |
+
padd_left,
|
| 219 |
+
):
|
| 220 |
+
"""Removes redundant bbox for rows&columns and divides each row into cells from columns
|
| 221 |
Args:
|
| 222 |
Returns:
|
| 223 |
+
|
| 224 |
+
"""
|
| 225 |
cells_img = {}
|
| 226 |
header_idx = 0
|
| 227 |
row_idx = 0
|
|
|
|
| 249 |
# new_master_row[k_row] = v_row
|
| 250 |
######################################################
|
| 251 |
for k_row, v_row in new_master_row.items():
|
| 252 |
+
|
| 253 |
_, _, _, _, row_img = v_row
|
| 254 |
xmax, ymax = row_img.size
|
| 255 |
xa, ya, xb, yb = 0, 0, 0, ymax
|
|
|
|
| 269 |
xb = xmax_col
|
| 270 |
if idx == 0:
|
| 271 |
xa = 0
|
| 272 |
+
if idx == len(new_cols) - 1:
|
| 273 |
xb = xmax
|
| 274 |
xa, ya, xb, yb = xa, ya, xb, yb
|
| 275 |
|
| 276 |
row_img_cropped = row_img.crop((xa, ya, xb, yb))
|
| 277 |
row_img_list.append(row_img_cropped)
|
| 278 |
|
| 279 |
+
cells_img[k_row + "." + str(row_idx)] = row_img_list
|
| 280 |
row_idx += 1
|
| 281 |
|
| 282 |
+
return cells_img, len(new_cols), len(new_master_row) - 1
|
| 283 |
+
|
| 284 |
|
| 285 |
def pytess(cell_pil_img):
|
| 286 |
+
return " ".join(
|
| 287 |
+
pytesseract.image_to_data(
|
| 288 |
+
cell_pil_img,
|
| 289 |
+
output_type=Output.DICT,
|
| 290 |
+
config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces",
|
| 291 |
+
)["text"]
|
| 292 |
+
).strip()
|
| 293 |
|
| 294 |
+
|
| 295 |
+
def uniquify(seq, suffs=count(1)):
|
| 296 |
"""Make all the items unique by adding a suffix (1, 2, etc).
|
| 297 |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
|
| 298 |
`seq` is mutable sequence of strings.
|
| 299 |
`suffs` is an optional alternative suffix iterable.
|
| 300 |
"""
|
| 301 |
+
not_unique = [k for k, v in Counter(seq).items() if v > 1]
|
| 302 |
|
| 303 |
+
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
|
| 304 |
+
for idx, s in enumerate(seq):
|
| 305 |
try:
|
| 306 |
suffix = str(next(suff_gens[s]))
|
| 307 |
except KeyError:
|
|
|
|
| 311 |
|
| 312 |
return seq
|
| 313 |
|
| 314 |
+
|
| 315 |
def clean_dataframe(df):
|
| 316 |
+
"""
|
| 317 |
Remove irrelevant symbols that appear with tesseractOCR
|
| 318 |
+
"""
|
| 319 |
# df.columns = [col.replace('|', '') for col in df.columns]
|
| 320 |
|
| 321 |
for col in df.columns:
|
| 322 |
|
| 323 |
+
df[col] = df[col].str.replace("'", "", regex=True)
|
| 324 |
+
df[col] = df[col].str.replace('"', "", regex=True)
|
| 325 |
+
df[col] = df[col].str.replace("]", "", regex=True)
|
| 326 |
+
df[col] = df[col].str.replace("[", "", regex=True)
|
| 327 |
+
df[col] = df[col].str.replace("{", "", regex=True)
|
| 328 |
+
df[col] = df[col].str.replace("}", "", regex=True)
|
| 329 |
+
df[col] = df[col].str.replace("|", "", regex=True)
|
| 330 |
return df
|
| 331 |
|
| 332 |
+
|
| 333 |
+
def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path):
|
| 334 |
+
"""Create dataframe using list of cell values of the table, also checks for valid header of dataframe
|
| 335 |
Args:
|
| 336 |
cells_pytess_result: list of strings, each element representing a cell in a table
|
| 337 |
max_cols, max_rows: number of columns and rows
|
| 338 |
Returns:
|
| 339 |
+
dataframe : final dataframe after all pre-processing
|
| 340 |
+
"""
|
| 341 |
|
| 342 |
headers = cells_pytess_result[:max_cols]
|
| 343 |
+
new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase))
|
| 344 |
counter = 0
|
| 345 |
|
| 346 |
cells_list = cells_pytess_result[max_cols:]
|
|
|
|
| 352 |
df.iat[nrows, ncols] = str(cells_list[cell_idx])
|
| 353 |
cell_idx += 1
|
| 354 |
|
| 355 |
+
## To check if there are duplicate headers if result of uniquify+col == col
|
| 356 |
## This check removes headers when all headers are empty or if median of header word count is less than 6
|
| 357 |
for x, col in zip(string.ascii_lowercase, new_headers):
|
| 358 |
+
if f" {x!s}" == col:
|
| 359 |
counter += 1
|
| 360 |
header_char_count = [len(col) for col in new_headers]
|
| 361 |
|
|
|
|
| 369 |
|
| 370 |
return df
|
| 371 |
|
| 372 |
+
|
| 373 |
+
def process_image(
|
| 374 |
+
image,
|
| 375 |
+
td_threshold,
|
| 376 |
+
tsr_threshold,
|
| 377 |
+
padd_top,
|
| 378 |
+
padd_left,
|
| 379 |
+
padd_bottom,
|
| 380 |
+
padd_right,
|
| 381 |
+
delta_xmin,
|
| 382 |
+
delta_ymin,
|
| 383 |
+
delta_xmax,
|
| 384 |
+
delta_ymax,
|
| 385 |
+
expand_rowcol_bbox_top,
|
| 386 |
+
expand_rowcol_bbox_bottom,
|
| 387 |
+
):
|
| 388 |
+
image = image.convert("RGB")
|
| 389 |
+
model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=td_threshold)
|
| 390 |
+
# plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
|
| 391 |
+
cropped_img_list = crop_tables(
|
| 392 |
+
image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
result = []
|
| 396 |
+
for idx, unpadded_table in enumerate(cropped_img_list):
|
| 397 |
+
table = add_padding(
|
| 398 |
+
unpadded_table, padd_top, padd_right, padd_bottom, padd_left
|
| 399 |
+
)
|
| 400 |
+
model, probas, bboxes_scaled = table_struct_recog(
|
| 401 |
+
table, THRESHOLD_PROBA=tsr_threshold
|
| 402 |
+
)
|
| 403 |
+
rows, cols = generate_structure(
|
| 404 |
+
model,
|
| 405 |
+
table,
|
| 406 |
+
probas,
|
| 407 |
+
bboxes_scaled,
|
| 408 |
+
expand_rowcol_bbox_top,
|
| 409 |
+
expand_rowcol_bbox_bottom,
|
| 410 |
+
)
|
| 411 |
+
rows, cols = sort_table_featuresv2(rows, cols)
|
| 412 |
+
master_row, cols = individual_table_featuresv2(table, rows, cols)
|
| 413 |
+
cells_img, max_cols, max_rows = object_to_cellsv2(
|
| 414 |
+
master_row,
|
| 415 |
+
cols,
|
| 416 |
+
expand_rowcol_bbox_top,
|
| 417 |
+
expand_rowcol_bbox_bottom,
|
| 418 |
+
padd_left,
|
| 419 |
+
)
|
| 420 |
+
sequential_cell_img_list = []
|
| 421 |
+
for k, img_list in cells_img.items():
|
| 422 |
+
for img in img_list:
|
| 423 |
+
sequential_cell_img_list.append(pytess(img))
|
| 424 |
+
|
| 425 |
+
csv_path = "/content/sample_data/table_" + str(idx)
|
| 426 |
+
df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
|
| 427 |
+
result.append(df)
|
| 428 |
+
res = result[0].to_json()
|
| 429 |
+
return res
|
| 430 |
|
| 431 |
|
| 432 |
title = "Interactive demo OCR: microsoft - table-transformer-detection + tesseract"
|
| 433 |
description = "Demo for microsoft - table-transformer-detection + tesseract"
|
| 434 |
article = "<p style='text-align: center'></p>"
|
| 435 |
+
examples = [["image_0.png"]]
|
| 436 |
+
|
| 437 |
+
iface = gr.Interface(
|
| 438 |
+
fn=process_image,
|
| 439 |
+
inputs=[
|
| 440 |
+
gr.Image(type="pil"),
|
| 441 |
+
gr.Slider(0, 1, 0.9),
|
| 442 |
+
gr.Slider(0, 1, 0.8),
|
| 443 |
+
gr.Slider(0, 200, 100),
|
| 444 |
+
gr.Slider(0, 200, 100),
|
| 445 |
+
gr.Slider(0, 200, 100),
|
| 446 |
+
gr.Slider(0, 200, 100),
|
| 447 |
+
gr.Number(0),
|
| 448 |
+
gr.Number(0),
|
| 449 |
+
gr.Number(0),
|
| 450 |
+
gr.Number(0),
|
| 451 |
+
gr.Number(0),
|
| 452 |
+
gr.Number(0),
|
| 453 |
+
],
|
| 454 |
+
outputs="text",
|
| 455 |
+
title=title,
|
| 456 |
+
description=description,
|
| 457 |
+
article=article,
|
| 458 |
+
examples=examples,
|
| 459 |
+
)
|
| 460 |
iface.launch(debug=True)
|
| 461 |
+
|