Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
added the high and low roc value
Browse files- .ipynb_checkpoints/Untitled-checkpoint.ipynb +0 -0
- .ipynb_checkpoints/distinguish_high_low_label-checkpoint.ipynb +447 -0
- Untitled.ipynb +2 -2
- app.py +82 -30
- distinguish_high_low_label.ipynb +451 -0
- new_test_saved_finetuned_model.py +5 -2
- result.txt +1 -1
- roc_data2.pkl +3 -0
.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
.ipynb_checkpoints/distinguish_high_low_label-checkpoint.ipynb
ADDED
|
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pickle\n",
|
| 11 |
+
"import pandas as pd"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 4,
|
| 17 |
+
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"file_path = \"roc_data2.pkl\"\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"# Open and load the pickle file\n",
|
| 24 |
+
"with open(file_path, 'rb') as file:\n",
|
| 25 |
+
" data = pickle.load(file)\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"# Print or use the data\n",
|
| 29 |
+
"# data[2]"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": 5,
|
| 35 |
+
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [],
|
| 38 |
+
"source": [
|
| 39 |
+
"inc_slider=1\n",
|
| 40 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
| 41 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
| 42 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
| 43 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
| 44 |
+
"grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"# Step 1: Extract unique school numbers from test_info\n",
|
| 47 |
+
"unique_schools = test_info[0].unique()\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"# Step 2: Filter the grad_rate_data using the unique school numbers\n",
|
| 50 |
+
"schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# Define a threshold for high and low graduation rates (adjust as needed)\n",
|
| 53 |
+
"grad_rate_threshold = 0.9 \n",
|
| 54 |
+
"\n",
|
| 55 |
+
"# Step 4: Divide schools into high and low graduation rate groups\n",
|
| 56 |
+
"high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()\n",
|
| 57 |
+
"low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"# Step 5: Sample percentage of schools from each group\n",
|
| 60 |
+
"high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
| 61 |
+
"low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"# Step 6: Combine the sampled schools\n",
|
| 64 |
+
"random_schools = high_sample + low_sample\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# Step 7: Get indices for the sampled schools\n",
|
| 67 |
+
"indices = test_info[test_info[0].isin(random_schools)].index.tolist()\n",
|
| 68 |
+
"\n"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": 6,
|
| 74 |
+
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [],
|
| 77 |
+
"source": [
|
| 78 |
+
"high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()\n",
|
| 79 |
+
"low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": 7,
|
| 85 |
+
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"outputs": [
|
| 88 |
+
{
|
| 89 |
+
"data": {
|
| 90 |
+
"text/plain": [
|
| 91 |
+
"997"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
"execution_count": 7,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"output_type": "execute_result"
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
"source": [
|
| 100 |
+
"len(high_indices)+len(low_indices)\n"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": 8,
|
| 106 |
+
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [
|
| 109 |
+
{
|
| 110 |
+
"data": {
|
| 111 |
+
"text/html": [
|
| 112 |
+
"<div>\n",
|
| 113 |
+
"<style scoped>\n",
|
| 114 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 115 |
+
" vertical-align: middle;\n",
|
| 116 |
+
" }\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" .dataframe tbody tr th {\n",
|
| 119 |
+
" vertical-align: top;\n",
|
| 120 |
+
" }\n",
|
| 121 |
+
"\n",
|
| 122 |
+
" .dataframe thead th {\n",
|
| 123 |
+
" text-align: right;\n",
|
| 124 |
+
" }\n",
|
| 125 |
+
"</style>\n",
|
| 126 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 127 |
+
" <thead>\n",
|
| 128 |
+
" <tr style=\"text-align: right;\">\n",
|
| 129 |
+
" <th></th>\n",
|
| 130 |
+
" <th>0</th>\n",
|
| 131 |
+
" </tr>\n",
|
| 132 |
+
" </thead>\n",
|
| 133 |
+
" <tbody>\n",
|
| 134 |
+
" <tr>\n",
|
| 135 |
+
" <th>5342</th>\n",
|
| 136 |
+
" <td>PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...</td>\n",
|
| 137 |
+
" </tr>\n",
|
| 138 |
+
" <tr>\n",
|
| 139 |
+
" <th>5343</th>\n",
|
| 140 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 141 |
+
" </tr>\n",
|
| 142 |
+
" <tr>\n",
|
| 143 |
+
" <th>5344</th>\n",
|
| 144 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 145 |
+
" </tr>\n",
|
| 146 |
+
" <tr>\n",
|
| 147 |
+
" <th>5345</th>\n",
|
| 148 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
| 149 |
+
" </tr>\n",
|
| 150 |
+
" <tr>\n",
|
| 151 |
+
" <th>5346</th>\n",
|
| 152 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...</td>\n",
|
| 153 |
+
" </tr>\n",
|
| 154 |
+
" <tr>\n",
|
| 155 |
+
" <th>...</th>\n",
|
| 156 |
+
" <td>...</td>\n",
|
| 157 |
+
" </tr>\n",
|
| 158 |
+
" <tr>\n",
|
| 159 |
+
" <th>113359</th>\n",
|
| 160 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
| 161 |
+
" </tr>\n",
|
| 162 |
+
" <tr>\n",
|
| 163 |
+
" <th>113360</th>\n",
|
| 164 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 165 |
+
" </tr>\n",
|
| 166 |
+
" <tr>\n",
|
| 167 |
+
" <th>113361</th>\n",
|
| 168 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 169 |
+
" </tr>\n",
|
| 170 |
+
" <tr>\n",
|
| 171 |
+
" <th>113362</th>\n",
|
| 172 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 173 |
+
" </tr>\n",
|
| 174 |
+
" <tr>\n",
|
| 175 |
+
" <th>113363</th>\n",
|
| 176 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" </tbody>\n",
|
| 179 |
+
"</table>\n",
|
| 180 |
+
"<p>997 rows × 1 columns</p>\n",
|
| 181 |
+
"</div>"
|
| 182 |
+
],
|
| 183 |
+
"text/plain": [
|
| 184 |
+
" 0\n",
|
| 185 |
+
"5342 PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...\n",
|
| 186 |
+
"5343 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 187 |
+
"5344 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 188 |
+
"5345 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
| 189 |
+
"5346 PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...\n",
|
| 190 |
+
"... ...\n",
|
| 191 |
+
"113359 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
| 192 |
+
"113360 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 193 |
+
"113361 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 194 |
+
"113362 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 195 |
+
"113363 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"[997 rows x 1 columns]"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
"execution_count": 8,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"output_type": "execute_result"
|
| 203 |
+
}
|
| 204 |
+
],
|
| 205 |
+
"source": [
|
| 206 |
+
"# Load the test file and select rows based on indices\n",
|
| 207 |
+
"test = pd.read_csv(test_location, sep=',', header=None, engine='python')\n",
|
| 208 |
+
"selected_rows_df2 = test.loc[indices]\n",
|
| 209 |
+
"selected_rows_df2"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": 11,
|
| 215 |
+
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"graduation_groups = [\n",
|
| 220 |
+
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
| 221 |
+
"]\n",
|
| 222 |
+
"# graduation_groups"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": 43,
|
| 228 |
+
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
| 229 |
+
"metadata": {},
|
| 230 |
+
"outputs": [],
|
| 231 |
+
"source": [
|
| 232 |
+
"t_label=data[0]\n",
|
| 233 |
+
"p_label=data[1]"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": 47,
|
| 239 |
+
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
| 244 |
+
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"# Step 2: Separate the labels for high and low groups\n",
|
| 247 |
+
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
| 248 |
+
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
| 251 |
+
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
| 252 |
+
"\n"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"cell_type": "code",
|
| 257 |
+
"execution_count": 50,
|
| 258 |
+
"id": "c8e34660-83d0-46a1-a218-95d609e11729",
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [
|
| 261 |
+
{
|
| 262 |
+
"data": {
|
| 263 |
+
"text/plain": [
|
| 264 |
+
"997"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
"execution_count": 50,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"output_type": "execute_result"
|
| 270 |
+
}
|
| 271 |
+
],
|
| 272 |
+
"source": [
|
| 273 |
+
"len(low_t_labels)+len(high_t_labels)"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "code",
|
| 278 |
+
"execution_count": 51,
|
| 279 |
+
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
| 280 |
+
"metadata": {},
|
| 281 |
+
"outputs": [],
|
| 282 |
+
"source": [
|
| 283 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "code",
|
| 288 |
+
"execution_count": 52,
|
| 289 |
+
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"outputs": [
|
| 292 |
+
{
|
| 293 |
+
"name": "stdout",
|
| 294 |
+
"output_type": "stream",
|
| 295 |
+
"text": [
|
| 296 |
+
"ROC-AUC Score for High Graduation Rate Group: 0.675\n",
|
| 297 |
+
"ROC-AUC Score for Low Graduation Rate Group: 0.7489795918367347\n"
|
| 298 |
+
]
|
| 299 |
+
}
|
| 300 |
+
],
|
| 301 |
+
"source": [
|
| 302 |
+
"high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None\n",
|
| 303 |
+
"low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"print(\"ROC-AUC Score for High Graduation Rate Group:\", high_roc_auc)\n",
|
| 306 |
+
"print(\"ROC-AUC Score for Low Graduation Rate Group:\", low_roc_auc)"
|
| 307 |
+
]
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "code",
|
| 311 |
+
"execution_count": 4,
|
| 312 |
+
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
| 313 |
+
"metadata": {},
|
| 314 |
+
"outputs": [
|
| 315 |
+
{
|
| 316 |
+
"ename": "TypeError",
|
| 317 |
+
"evalue": "cannot convert the series to <class 'int'>",
|
| 318 |
+
"output_type": "error",
|
| 319 |
+
"traceback": [
|
| 320 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 321 |
+
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 322 |
+
"Cell \u001b[1;32mIn[4], line 47\u001b[0m\n\u001b[0;32m 44\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(test_info_location, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m file:\n\u001b[0;32m 45\u001b[0m data \u001b[38;5;241m=\u001b[39m file\u001b[38;5;241m.\u001b[39mreadlines()\n\u001b[1;32m---> 47\u001b[0m ideal_opt_task \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mint\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mtest_info\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m7\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# Assuming test_info[7] is accessible and holds the ideal task (1 or 2)\u001b[39;00m\n\u001b[0;32m 49\u001b[0m \u001b[38;5;66;03m# Initialize counters\u001b[39;00m\n\u001b[0;32m 50\u001b[0m task_counts \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 51\u001b[0m \u001b[38;5;241m1\u001b[39m: {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt1\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt2\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboth\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m},\n\u001b[0;32m 52\u001b[0m \u001b[38;5;241m2\u001b[39m: {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt1\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124monly_opt2\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mboth\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;241m0\u001b[39m}\n\u001b[0;32m 53\u001b[0m }\n",
|
| 323 |
+
"File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python312\\Lib\\site-packages\\pandas\\core\\series.py:230\u001b[0m, in \u001b[0;36m_coerce_method.<locals>.wrapper\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 222\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 223\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCalling \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconverter\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m on a single element Series is \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 224\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdeprecated and will raise a TypeError in the future. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 227\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[0;32m 228\u001b[0m )\n\u001b[0;32m 229\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m converter(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39miloc[\u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m--> 230\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcannot convert the series to \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mconverter\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
|
| 324 |
+
"\u001b[1;31mTypeError\u001b[0m: cannot convert the series to <class 'int'>"
|
| 325 |
+
]
|
| 326 |
+
}
|
| 327 |
+
],
|
| 328 |
+
"source": [
|
| 329 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
| 330 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
| 331 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
| 332 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"def analyze_row(row, ideal_opt_task):\n",
|
| 335 |
+
" # Split the row into fields\n",
|
| 336 |
+
" fields = row.split(\"\\t\")\n",
|
| 337 |
+
"\n",
|
| 338 |
+
" # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer\n",
|
| 339 |
+
" optional_task_1_subtasks = [\"DenominatorFactor\", \"NumeratorFactor\", \"EquationAnswer\"]\n",
|
| 340 |
+
" optional_task_2_subtasks = [\n",
|
| 341 |
+
" \"FirstRow2:1\", \"FirstRow2:2\", \"FirstRow1:1\", \"FirstRow1:2\", \n",
|
| 342 |
+
" \"SecondRow\", \"ThirdRow\"\n",
|
| 343 |
+
" ]\n",
|
| 344 |
+
" final_answer_tasks = [\"FinalAnswer\"]\n",
|
| 345 |
+
"\n",
|
| 346 |
+
" # Helper function to evaluate task attempts\n",
|
| 347 |
+
" def evaluate_tasks(fields, tasks):\n",
|
| 348 |
+
" task_status = {}\n",
|
| 349 |
+
" for task in tasks:\n",
|
| 350 |
+
" relevant_attempts = [f for f in fields if task in f]\n",
|
| 351 |
+
" if any(\"OK\" in attempt for attempt in relevant_attempts):\n",
|
| 352 |
+
" task_status[task] = \"Attempted (Successful)\"\n",
|
| 353 |
+
" elif any(\"ERROR\" in attempt for attempt in relevant_attempts):\n",
|
| 354 |
+
" task_status[task] = \"Attempted (Error)\"\n",
|
| 355 |
+
" elif any(\"JIT\" in attempt for attempt in relevant_attempts):\n",
|
| 356 |
+
" task_status[task] = \"Attempted (JIT)\"\n",
|
| 357 |
+
" else:\n",
|
| 358 |
+
" task_status[task] = \"Unattempted\"\n",
|
| 359 |
+
" return task_status\n",
|
| 360 |
+
"\n",
|
| 361 |
+
" # Evaluate tasks for each category\n",
|
| 362 |
+
" optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)\n",
|
| 363 |
+
" optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)\n",
|
| 364 |
+
"\n",
|
| 365 |
+
" # Check if tasks have any successful attempt\n",
|
| 366 |
+
" opt1_done = any(status == \"Attempted (Successful)\" for status in optional_task_1_status.values())\n",
|
| 367 |
+
" opt2_done = any(status == \"Attempted (Successful)\" for status in optional_task_2_status.values())\n",
|
| 368 |
+
"\n",
|
| 369 |
+
" return opt1_done, opt2_done\n",
|
| 370 |
+
"\n",
|
| 371 |
+
"# Read data from test_info.txt\n",
|
| 372 |
+
"with open(test_info_location, \"r\") as file:\n",
|
| 373 |
+
" data = file.readlines()\n",
|
| 374 |
+
"\n",
|
| 375 |
+
"ideal_opt_task = int(test_info[6]) # Assuming test_info[7] is accessible and holds the ideal task (1 or 2)\n",
|
| 376 |
+
"\n",
|
| 377 |
+
"# Initialize counters\n",
|
| 378 |
+
"task_counts = {\n",
|
| 379 |
+
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
|
| 380 |
+
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
|
| 381 |
+
"}\n",
|
| 382 |
+
"\n",
|
| 383 |
+
"for row in data:\n",
|
| 384 |
+
" row = row.strip()\n",
|
| 385 |
+
" if not row:\n",
|
| 386 |
+
" continue\n",
|
| 387 |
+
" opt1_done, opt2_done = analyze_row(row, ideal_opt_task)\n",
|
| 388 |
+
"\n",
|
| 389 |
+
" if ideal_opt_task == 0:\n",
|
| 390 |
+
" if opt1_done and not opt2_done:\n",
|
| 391 |
+
" task_counts[1][\"only_opt1\"] += 1\n",
|
| 392 |
+
" elif not opt1_done and opt2_done:\n",
|
| 393 |
+
" task_counts[1][\"only_opt2\"] += 1\n",
|
| 394 |
+
" elif opt1_done and opt2_done:\n",
|
| 395 |
+
" task_counts[1][\"both\"] += 1\n",
|
| 396 |
+
" elif ideal_opt_task == 1:\n",
|
| 397 |
+
" if opt1_done and not opt2_done:\n",
|
| 398 |
+
" task_counts[2][\"only_opt1\"] += 1\n",
|
| 399 |
+
" elif not opt1_done and opt2_done:\n",
|
| 400 |
+
" task_counts[2][\"only_opt2\"] += 1\n",
|
| 401 |
+
" elif opt1_done and opt2_done:\n",
|
| 402 |
+
" task_counts[2][\"both\"] += 1\n",
|
| 403 |
+
"\n",
|
| 404 |
+
"# Create a string output for results\n",
|
| 405 |
+
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
| 406 |
+
"output_summary += \"-----------------------\\n\"\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"for ideal_task, counts in task_counts.items():\n",
|
| 409 |
+
" output_summary += f\"Ideal Task = OptionalTask_{ideal_task}:\\n\"\n",
|
| 410 |
+
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
| 411 |
+
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
| 412 |
+
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"print(output_summary)"
|
| 415 |
+
]
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"cell_type": "code",
|
| 419 |
+
"execution_count": null,
|
| 420 |
+
"id": "65ad9383-741f-44eb-8e8f-853ee7bc52a2",
|
| 421 |
+
"metadata": {},
|
| 422 |
+
"outputs": [],
|
| 423 |
+
"source": []
|
| 424 |
+
}
|
| 425 |
+
],
|
| 426 |
+
"metadata": {
|
| 427 |
+
"kernelspec": {
|
| 428 |
+
"display_name": "Python 3 (ipykernel)",
|
| 429 |
+
"language": "python",
|
| 430 |
+
"name": "python3"
|
| 431 |
+
},
|
| 432 |
+
"language_info": {
|
| 433 |
+
"codemirror_mode": {
|
| 434 |
+
"name": "ipython",
|
| 435 |
+
"version": 3
|
| 436 |
+
},
|
| 437 |
+
"file_extension": ".py",
|
| 438 |
+
"mimetype": "text/x-python",
|
| 439 |
+
"name": "python",
|
| 440 |
+
"nbconvert_exporter": "python",
|
| 441 |
+
"pygments_lexer": "ipython3",
|
| 442 |
+
"version": "3.12.4"
|
| 443 |
+
}
|
| 444 |
+
},
|
| 445 |
+
"nbformat": 4,
|
| 446 |
+
"nbformat_minor": 5
|
| 447 |
+
}
|
Untitled.ipynb
CHANGED
|
@@ -623,7 +623,7 @@
|
|
| 623 |
"uri": "us-docker.pkg.dev/deeplearning-platform-release/gcr.io/base-cu113:m122"
|
| 624 |
},
|
| 625 |
"kernelspec": {
|
| 626 |
-
"display_name": "Python 3",
|
| 627 |
"language": "python",
|
| 628 |
"name": "python3"
|
| 629 |
},
|
|
@@ -637,7 +637,7 @@
|
|
| 637 |
"name": "python",
|
| 638 |
"nbconvert_exporter": "python",
|
| 639 |
"pygments_lexer": "ipython3",
|
| 640 |
-
"version": "3.
|
| 641 |
}
|
| 642 |
},
|
| 643 |
"nbformat": 4,
|
|
|
|
| 623 |
"uri": "us-docker.pkg.dev/deeplearning-platform-release/gcr.io/base-cu113:m122"
|
| 624 |
},
|
| 625 |
"kernelspec": {
|
| 626 |
+
"display_name": "Python 3 (ipykernel)",
|
| 627 |
"language": "python",
|
| 628 |
"name": "python3"
|
| 629 |
},
|
|
|
|
| 637 |
"name": "python",
|
| 638 |
"nbconvert_exporter": "python",
|
| 639 |
"pygments_lexer": "ipython3",
|
| 640 |
+
"version": "3.12.4"
|
| 641 |
}
|
| 642 |
},
|
| 643 |
"nbformat": 4,
|
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import shutil
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from sklearn.metrics import roc_curve, auc
|
| 10 |
import pandas as pd
|
|
|
|
| 11 |
# Define the function to process the input file and model selection
|
| 12 |
|
| 13 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
@@ -66,6 +67,8 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 66 |
|
| 67 |
# Step 7: Get indices for the sampled schools
|
| 68 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
|
|
|
|
|
|
| 69 |
|
| 70 |
# Load the test file and select rows based on indices
|
| 71 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
|
@@ -74,7 +77,27 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 74 |
# Save the selected rows to a file
|
| 75 |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# For demonstration purposes, we'll just return the content with the selected model name
|
| 79 |
|
| 80 |
# print(checkpoint)
|
|
@@ -87,7 +110,7 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 87 |
# model_name="highGRschool10"
|
| 88 |
# Function to analyze each row
|
| 89 |
def analyze_row(row):
|
| 90 |
-
|
| 91 |
fields = row.split("\t")
|
| 92 |
|
| 93 |
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
|
|
@@ -96,14 +119,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 96 |
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
|
| 97 |
"SecondRow", "ThirdRow"
|
| 98 |
]
|
| 99 |
-
final_answer_tasks = ["FinalAnswer"]
|
| 100 |
|
| 101 |
# Helper function to evaluate task attempts
|
| 102 |
def evaluate_tasks(fields, tasks):
|
| 103 |
task_status = {}
|
| 104 |
for task in tasks:
|
| 105 |
relevant_attempts = [f for f in fields if task in f]
|
| 106 |
-
# print(relevant_attempts)
|
| 107 |
if any("OK" in attempt for attempt in relevant_attempts):
|
| 108 |
task_status[task] = "Attempted (Successful)"
|
| 109 |
elif any("ERROR" in attempt for attempt in relevant_attempts):
|
|
@@ -117,40 +138,62 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 117 |
# Evaluate tasks for each category
|
| 118 |
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
|
| 119 |
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
return result
|
| 129 |
# Read data from test_info.txt
|
| 130 |
with open(test_info_location, "r") as file:
|
| 131 |
data = file.readlines()
|
| 132 |
-
results = [analyze_row(row.strip()) for row in data if row.strip()]
|
| 133 |
|
| 134 |
-
|
|
|
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
|
| 145 |
# Create a string output for results
|
| 146 |
output_summary = "Task Analysis Summary:\n"
|
| 147 |
output_summary += "-----------------------\n"
|
| 148 |
|
| 149 |
-
for
|
| 150 |
-
output_summary += f"Task
|
| 151 |
-
|
| 152 |
-
|
|
|
|
| 153 |
|
|
|
|
| 154 |
|
| 155 |
progress(0.2, desc="analysis done!! Executing models")
|
| 156 |
print("finetuned task: ",finetune_task)
|
|
@@ -175,10 +218,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 175 |
result[key]=value
|
| 176 |
else:
|
| 177 |
result[key]=float(value)
|
|
|
|
|
|
|
| 178 |
# Create a plot
|
| 179 |
with open("roc_data.pkl", "rb") as f:
|
| 180 |
fpr, tpr, _ = pickle.load(f)
|
| 181 |
-
|
| 182 |
roc_auc = auc(fpr, tpr)
|
| 183 |
fig, ax = plt.subplots()
|
| 184 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
|
@@ -191,6 +236,10 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 191 |
plot_path = "plot.png"
|
| 192 |
fig.savefig(plot_path)
|
| 193 |
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
progress(1.0)
|
| 195 |
# Prepare text output
|
| 196 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
|
@@ -203,9 +252,12 @@ def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
| 203 |
Total Schools in test: {len(unique_schools):.4f}\n
|
| 204 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
| 205 |
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n
|
|
|
|
|
|
|
|
|
|
| 206 |
-----------------\n
|
| 207 |
"""
|
| 208 |
-
return text_output,plot_path
|
| 209 |
|
| 210 |
# List of models for the dropdown menu
|
| 211 |
|
|
@@ -456,11 +508,11 @@ tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
|
|
| 456 |
with gr.Row():
|
| 457 |
output_text = gr.Textbox(label="")
|
| 458 |
output_image = gr.Image(label="ROC")
|
| 459 |
-
|
| 460 |
|
| 461 |
btn = gr.Button("Submit")
|
| 462 |
|
| 463 |
-
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image])
|
| 464 |
|
| 465 |
|
| 466 |
# Launch the app
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from sklearn.metrics import roc_curve, auc
|
| 10 |
import pandas as pd
|
| 11 |
+
from sklearn.metrics import roc_auc_score
|
| 12 |
# Define the function to process the input file and model selection
|
| 13 |
|
| 14 |
def process_file(model_name,inc_slider,progress=Progress(track_tqdm=True)):
|
|
|
|
| 67 |
|
| 68 |
# Step 7: Get indices for the sampled schools
|
| 69 |
indices = test_info[test_info[0].isin(random_schools)].index.tolist()
|
| 70 |
+
high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()
|
| 71 |
+
low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()
|
| 72 |
|
| 73 |
# Load the test file and select rows based on indices
|
| 74 |
test = pd.read_csv(test_location, sep=',', header=None, engine='python')
|
|
|
|
| 77 |
# Save the selected rows to a file
|
| 78 |
selected_rows_df2.to_csv('selected_rows.txt', sep='\t', index=False, header=False, quoting=3, escapechar=' ')
|
| 79 |
|
| 80 |
+
graduation_groups = [
|
| 81 |
+
'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index
|
| 82 |
+
]
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
with open("roc_data2.pkl", 'rb') as file:
|
| 86 |
+
data = pickle.load(file)
|
| 87 |
+
t_label=data[0]
|
| 88 |
+
p_label=data[1]
|
| 89 |
+
# Step 1: Align graduation_group, t_label, and p_label
|
| 90 |
+
aligned_labels = list(zip(graduation_groups, t_label, p_label))
|
| 91 |
+
|
| 92 |
+
# Step 2: Separate the labels for high and low groups
|
| 93 |
+
high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']
|
| 94 |
+
low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']
|
| 95 |
+
|
| 96 |
+
high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']
|
| 97 |
+
low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']
|
| 98 |
+
|
| 99 |
+
high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None
|
| 100 |
+
low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None
|
| 101 |
# For demonstration purposes, we'll just return the content with the selected model name
|
| 102 |
|
| 103 |
# print(checkpoint)
|
|
|
|
| 110 |
# model_name="highGRschool10"
|
| 111 |
# Function to analyze each row
|
| 112 |
def analyze_row(row):
|
| 113 |
+
# Split the row into fields
|
| 114 |
fields = row.split("\t")
|
| 115 |
|
| 116 |
# Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer
|
|
|
|
| 119 |
"FirstRow2:1", "FirstRow2:2", "FirstRow1:1", "FirstRow1:2",
|
| 120 |
"SecondRow", "ThirdRow"
|
| 121 |
]
|
|
|
|
| 122 |
|
| 123 |
# Helper function to evaluate task attempts
|
| 124 |
def evaluate_tasks(fields, tasks):
|
| 125 |
task_status = {}
|
| 126 |
for task in tasks:
|
| 127 |
relevant_attempts = [f for f in fields if task in f]
|
|
|
|
| 128 |
if any("OK" in attempt for attempt in relevant_attempts):
|
| 129 |
task_status[task] = "Attempted (Successful)"
|
| 130 |
elif any("ERROR" in attempt for attempt in relevant_attempts):
|
|
|
|
| 138 |
# Evaluate tasks for each category
|
| 139 |
optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)
|
| 140 |
optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)
|
| 141 |
+
|
| 142 |
+
# Check if tasks have any successful attempt
|
| 143 |
+
opt1_done = any(status == "Attempted (Successful)" for status in optional_task_1_status.values())
|
| 144 |
+
opt2_done = any(status == "Attempted (Successful)" for status in optional_task_2_status.values())
|
| 145 |
+
|
| 146 |
+
return opt1_done, opt2_done
|
| 147 |
+
|
| 148 |
+
# Read data from test_info.txt
|
|
|
|
| 149 |
# Read data from test_info.txt
|
| 150 |
with open(test_info_location, "r") as file:
|
| 151 |
data = file.readlines()
|
|
|
|
| 152 |
|
| 153 |
+
# Assuming test_info[7] is a list with ideal tasks for each instance
|
| 154 |
+
ideal_tasks = test_info[6] # A list where each element is either 1 or 2
|
| 155 |
|
| 156 |
+
# Initialize counters
|
| 157 |
+
task_counts = {
|
| 158 |
+
1: {"only_opt1": 0, "only_opt2": 0, "both": 0},
|
| 159 |
+
2: {"only_opt1": 0, "only_opt2": 0, "both": 0}
|
| 160 |
+
}
|
| 161 |
|
| 162 |
+
# Analyze rows
|
| 163 |
+
for i, row in enumerate(data):
|
| 164 |
+
row = row.strip()
|
| 165 |
+
if not row:
|
| 166 |
+
continue
|
| 167 |
+
|
| 168 |
+
ideal_task = ideal_tasks[i] # Get the ideal task for the current row
|
| 169 |
+
opt1_done, opt2_done = analyze_row(row)
|
| 170 |
+
|
| 171 |
+
if ideal_task == 0:
|
| 172 |
+
if opt1_done and not opt2_done:
|
| 173 |
+
task_counts[1]["only_opt1"] += 1
|
| 174 |
+
elif not opt1_done and opt2_done:
|
| 175 |
+
task_counts[1]["only_opt2"] += 1
|
| 176 |
+
elif opt1_done and opt2_done:
|
| 177 |
+
task_counts[1]["both"] += 1
|
| 178 |
+
elif ideal_task == 1:
|
| 179 |
+
if opt1_done and not opt2_done:
|
| 180 |
+
task_counts[2]["only_opt1"] += 1
|
| 181 |
+
elif not opt1_done and opt2_done:
|
| 182 |
+
task_counts[2]["only_opt2"] += 1
|
| 183 |
+
elif opt1_done and opt2_done:
|
| 184 |
+
task_counts[2]["both"] += 1
|
| 185 |
|
| 186 |
# Create a string output for results
|
| 187 |
output_summary = "Task Analysis Summary:\n"
|
| 188 |
output_summary += "-----------------------\n"
|
| 189 |
|
| 190 |
+
for ideal_task, counts in task_counts.items():
|
| 191 |
+
output_summary += f"Ideal Task = OptionalTask_{ideal_task}:\n"
|
| 192 |
+
output_summary += f" Only OptionalTask_1 done: {counts['only_opt1']}\n"
|
| 193 |
+
output_summary += f" Only OptionalTask_2 done: {counts['only_opt2']}\n"
|
| 194 |
+
output_summary += f" Both done: {counts['both']}\n"
|
| 195 |
|
| 196 |
+
# print(output_summary)
|
| 197 |
|
| 198 |
progress(0.2, desc="analysis done!! Executing models")
|
| 199 |
print("finetuned task: ",finetune_task)
|
|
|
|
| 218 |
result[key]=value
|
| 219 |
else:
|
| 220 |
result[key]=float(value)
|
| 221 |
+
result["ROC score of HGR"]=high_roc_auc
|
| 222 |
+
result["ROC score of LGR"]=low_roc_auc
|
| 223 |
# Create a plot
|
| 224 |
with open("roc_data.pkl", "rb") as f:
|
| 225 |
fpr, tpr, _ = pickle.load(f)
|
| 226 |
+
# print(fpr,tpr)
|
| 227 |
roc_auc = auc(fpr, tpr)
|
| 228 |
fig, ax = plt.subplots()
|
| 229 |
ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
|
|
|
|
| 236 |
plot_path = "plot.png"
|
| 237 |
fig.savefig(plot_path)
|
| 238 |
plt.close(fig)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
progress(1.0)
|
| 244 |
# Prepare text output
|
| 245 |
text_output = f"Model: {model_name}\nResult:\n{result}"
|
|
|
|
| 252 |
Total Schools in test: {len(unique_schools):.4f}\n
|
| 253 |
Total number of instances having Schools with HGR : {len(high_sample):.4f}\n
|
| 254 |
Total number of instances having Schools with LGR: {len(low_sample):.4f}\n
|
| 255 |
+
|
| 256 |
+
ROC score of HGR: {high_roc_auc}\n
|
| 257 |
+
ROC score of LGR: {low_roc_auc}\n
|
| 258 |
-----------------\n
|
| 259 |
"""
|
| 260 |
+
return text_output,plot_path,output_summary
|
| 261 |
|
| 262 |
# List of models for the dropdown menu
|
| 263 |
|
|
|
|
| 508 |
with gr.Row():
|
| 509 |
output_text = gr.Textbox(label="")
|
| 510 |
output_image = gr.Image(label="ROC")
|
| 511 |
+
output_summary = gr.Textbox(label="Summary")
|
| 512 |
|
| 513 |
btn = gr.Button("Submit")
|
| 514 |
|
| 515 |
+
btn.click(fn=process_file, inputs=[model_dropdown,increment_slider], outputs=[output_text,output_image,output_summary])
|
| 516 |
|
| 517 |
|
| 518 |
# Launch the app
|
distinguish_high_low_label.ipynb
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"id": "960bac80-51c7-4e9f-ad2d-84cd6c710f98",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pickle\n",
|
| 11 |
+
"import pandas as pd"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": 4,
|
| 17 |
+
"id": "a34f21d0-0854-4a54-8f93-67718b2f969e",
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"file_path = \"roc_data2.pkl\"\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"# Open and load the pickle file\n",
|
| 24 |
+
"with open(file_path, 'rb') as file:\n",
|
| 25 |
+
" data = pickle.load(file)\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"# Print or use the data\n",
|
| 29 |
+
"# data[2]"
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "code",
|
| 34 |
+
"execution_count": 5,
|
| 35 |
+
"id": "f9febed4-ce50-4e30-96ea-4b538ce2f9a1",
|
| 36 |
+
"metadata": {},
|
| 37 |
+
"outputs": [],
|
| 38 |
+
"source": [
|
| 39 |
+
"inc_slider=1\n",
|
| 40 |
+
"parent_location=\"ratio_proportion_change3_2223/sch_largest_100-coded/finetuning/\"\n",
|
| 41 |
+
"test_info_location=parent_location+\"fullTest/test_info.txt\"\n",
|
| 42 |
+
"test_location=parent_location+\"fullTest/test.txt\"\n",
|
| 43 |
+
"test_info = pd.read_csv(test_info_location, sep=',', header=None, engine='python')\n",
|
| 44 |
+
"grad_rate_data = pd.DataFrame(pd.read_pickle('school_grduation_rate.pkl'),columns=['school_number','grad_rate']) # Load the grad_rate data\n",
|
| 45 |
+
"\n",
|
| 46 |
+
"# Step 1: Extract unique school numbers from test_info\n",
|
| 47 |
+
"unique_schools = test_info[0].unique()\n",
|
| 48 |
+
"\n",
|
| 49 |
+
"# Step 2: Filter the grad_rate_data using the unique school numbers\n",
|
| 50 |
+
"schools = grad_rate_data[grad_rate_data['school_number'].isin(unique_schools)]\n",
|
| 51 |
+
"\n",
|
| 52 |
+
"# Define a threshold for high and low graduation rates (adjust as needed)\n",
|
| 53 |
+
"grad_rate_threshold = 0.9 \n",
|
| 54 |
+
"\n",
|
| 55 |
+
"# Step 4: Divide schools into high and low graduation rate groups\n",
|
| 56 |
+
"high_grad_schools = schools[schools['grad_rate'] >= grad_rate_threshold]['school_number'].unique()\n",
|
| 57 |
+
"low_grad_schools = schools[schools['grad_rate'] < grad_rate_threshold]['school_number'].unique()\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"# Step 5: Sample percentage of schools from each group\n",
|
| 60 |
+
"high_sample = pd.Series(high_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
| 61 |
+
"low_sample = pd.Series(low_grad_schools).sample(frac=inc_slider/100, random_state=1).tolist()\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"# Step 6: Combine the sampled schools\n",
|
| 64 |
+
"random_schools = high_sample + low_sample\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# Step 7: Get indices for the sampled schools\n",
|
| 67 |
+
"indices = test_info[test_info[0].isin(random_schools)].index.tolist()\n",
|
| 68 |
+
"\n"
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"cell_type": "code",
|
| 73 |
+
"execution_count": 6,
|
| 74 |
+
"id": "fdfdf4b6-2752-4a21-9880-869af69f20cf",
|
| 75 |
+
"metadata": {},
|
| 76 |
+
"outputs": [],
|
| 77 |
+
"source": [
|
| 78 |
+
"high_indices = test_info[(test_info[0].isin(high_sample))].index.tolist()\n",
|
| 79 |
+
"low_indices = test_info[(test_info[0].isin(low_sample))].index.tolist()"
|
| 80 |
+
]
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"execution_count": 7,
|
| 85 |
+
"id": "a79a4598-5702-4cc8-9f07-8e18fdda648b",
|
| 86 |
+
"metadata": {},
|
| 87 |
+
"outputs": [
|
| 88 |
+
{
|
| 89 |
+
"data": {
|
| 90 |
+
"text/plain": [
|
| 91 |
+
"997"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
"execution_count": 7,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"output_type": "execute_result"
|
| 97 |
+
}
|
| 98 |
+
],
|
| 99 |
+
"source": [
|
| 100 |
+
"len(high_indices)+len(low_indices)\n"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": 8,
|
| 106 |
+
"id": "4707f3e6-2f44-46d8-ad8c-b6c244f693af",
|
| 107 |
+
"metadata": {},
|
| 108 |
+
"outputs": [
|
| 109 |
+
{
|
| 110 |
+
"data": {
|
| 111 |
+
"text/html": [
|
| 112 |
+
"<div>\n",
|
| 113 |
+
"<style scoped>\n",
|
| 114 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 115 |
+
" vertical-align: middle;\n",
|
| 116 |
+
" }\n",
|
| 117 |
+
"\n",
|
| 118 |
+
" .dataframe tbody tr th {\n",
|
| 119 |
+
" vertical-align: top;\n",
|
| 120 |
+
" }\n",
|
| 121 |
+
"\n",
|
| 122 |
+
" .dataframe thead th {\n",
|
| 123 |
+
" text-align: right;\n",
|
| 124 |
+
" }\n",
|
| 125 |
+
"</style>\n",
|
| 126 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 127 |
+
" <thead>\n",
|
| 128 |
+
" <tr style=\"text-align: right;\">\n",
|
| 129 |
+
" <th></th>\n",
|
| 130 |
+
" <th>0</th>\n",
|
| 131 |
+
" </tr>\n",
|
| 132 |
+
" </thead>\n",
|
| 133 |
+
" <tbody>\n",
|
| 134 |
+
" <tr>\n",
|
| 135 |
+
" <th>5342</th>\n",
|
| 136 |
+
" <td>PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...</td>\n",
|
| 137 |
+
" </tr>\n",
|
| 138 |
+
" <tr>\n",
|
| 139 |
+
" <th>5343</th>\n",
|
| 140 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 141 |
+
" </tr>\n",
|
| 142 |
+
" <tr>\n",
|
| 143 |
+
" <th>5344</th>\n",
|
| 144 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 145 |
+
" </tr>\n",
|
| 146 |
+
" <tr>\n",
|
| 147 |
+
" <th>5345</th>\n",
|
| 148 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
| 149 |
+
" </tr>\n",
|
| 150 |
+
" <tr>\n",
|
| 151 |
+
" <th>5346</th>\n",
|
| 152 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...</td>\n",
|
| 153 |
+
" </tr>\n",
|
| 154 |
+
" <tr>\n",
|
| 155 |
+
" <th>...</th>\n",
|
| 156 |
+
" <td>...</td>\n",
|
| 157 |
+
" </tr>\n",
|
| 158 |
+
" <tr>\n",
|
| 159 |
+
" <th>113359</th>\n",
|
| 160 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...</td>\n",
|
| 161 |
+
" </tr>\n",
|
| 162 |
+
" <tr>\n",
|
| 163 |
+
" <th>113360</th>\n",
|
| 164 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 165 |
+
" </tr>\n",
|
| 166 |
+
" <tr>\n",
|
| 167 |
+
" <th>113361</th>\n",
|
| 168 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 169 |
+
" </tr>\n",
|
| 170 |
+
" <tr>\n",
|
| 171 |
+
" <th>113362</th>\n",
|
| 172 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 173 |
+
" </tr>\n",
|
| 174 |
+
" <tr>\n",
|
| 175 |
+
" <th>113363</th>\n",
|
| 176 |
+
" <td>PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...</td>\n",
|
| 177 |
+
" </tr>\n",
|
| 178 |
+
" </tbody>\n",
|
| 179 |
+
"</table>\n",
|
| 180 |
+
"<p>997 rows × 1 columns</p>\n",
|
| 181 |
+
"</div>"
|
| 182 |
+
],
|
| 183 |
+
"text/plain": [
|
| 184 |
+
" 0\n",
|
| 185 |
+
"5342 PercentChange-0\\tNumeratorQuantity1-0\\tNumerat...\n",
|
| 186 |
+
"5343 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 187 |
+
"5344 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 188 |
+
"5345 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
| 189 |
+
"5346 PercentChange-0\\tNumeratorQuantity2-0\\tDenomin...\n",
|
| 190 |
+
"... ...\n",
|
| 191 |
+
"113359 PercentChange-0\\tNumeratorQuantity2-2\\tNumerat...\n",
|
| 192 |
+
"113360 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 193 |
+
"113361 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 194 |
+
"113362 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 195 |
+
"113363 PercentChange-0\\tNumeratorQuantity2-0\\tNumerat...\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"[997 rows x 1 columns]"
|
| 198 |
+
]
|
| 199 |
+
},
|
| 200 |
+
"execution_count": 8,
|
| 201 |
+
"metadata": {},
|
| 202 |
+
"output_type": "execute_result"
|
| 203 |
+
}
|
| 204 |
+
],
|
| 205 |
+
"source": [
|
| 206 |
+
"# Load the test file and select rows based on indices\n",
|
| 207 |
+
"test = pd.read_csv(test_location, sep=',', header=None, engine='python')\n",
|
| 208 |
+
"selected_rows_df2 = test.loc[indices]\n",
|
| 209 |
+
"selected_rows_df2"
|
| 210 |
+
]
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"cell_type": "code",
|
| 214 |
+
"execution_count": 11,
|
| 215 |
+
"id": "1d0c3d49-061f-486b-9c19-cf20945f3207",
|
| 216 |
+
"metadata": {},
|
| 217 |
+
"outputs": [],
|
| 218 |
+
"source": [
|
| 219 |
+
"graduation_groups = [\n",
|
| 220 |
+
" 'high' if idx in high_indices else 'low' for idx in selected_rows_df2.index\n",
|
| 221 |
+
"]\n",
|
| 222 |
+
"# graduation_groups"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": 43,
|
| 228 |
+
"id": "ad0ce4a1-27fa-4867-8061-4054dbb340df",
|
| 229 |
+
"metadata": {},
|
| 230 |
+
"outputs": [],
|
| 231 |
+
"source": [
|
| 232 |
+
"t_label=data[0]\n",
|
| 233 |
+
"p_label=data[1]"
|
| 234 |
+
]
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"cell_type": "code",
|
| 238 |
+
"execution_count": 47,
|
| 239 |
+
"id": "a4f4a2b9-3134-42ac-871b-4e117098cd0e",
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"# Step 1: Align graduation_group, t_label, and p_label\n",
|
| 244 |
+
"aligned_labels = list(zip(graduation_groups, t_label, p_label))\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"# Step 2: Separate the labels for high and low groups\n",
|
| 247 |
+
"high_t_labels = [t for grad, t, p in aligned_labels if grad == 'high']\n",
|
| 248 |
+
"low_t_labels = [t for grad, t, p in aligned_labels if grad == 'low']\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"high_p_labels = [p for grad, t, p in aligned_labels if grad == 'high']\n",
|
| 251 |
+
"low_p_labels = [p for grad, t, p in aligned_labels if grad == 'low']\n",
|
| 252 |
+
"\n"
|
| 253 |
+
]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"cell_type": "code",
|
| 257 |
+
"execution_count": 50,
|
| 258 |
+
"id": "c8e34660-83d0-46a1-a218-95d609e11729",
|
| 259 |
+
"metadata": {},
|
| 260 |
+
"outputs": [
|
| 261 |
+
{
|
| 262 |
+
"data": {
|
| 263 |
+
"text/plain": [
|
| 264 |
+
"997"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
"execution_count": 50,
|
| 268 |
+
"metadata": {},
|
| 269 |
+
"output_type": "execute_result"
|
| 270 |
+
}
|
| 271 |
+
],
|
| 272 |
+
"source": [
|
| 273 |
+
"len(low_t_labels)+len(high_t_labels)"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "code",
|
| 278 |
+
"execution_count": 51,
|
| 279 |
+
"id": "c11050db-2636-4c50-9cd4-b9943e5cee83",
|
| 280 |
+
"metadata": {},
|
| 281 |
+
"outputs": [],
|
| 282 |
+
"source": [
|
| 283 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix, roc_curve, roc_auc_score"
|
| 284 |
+
]
|
| 285 |
+
},
|
| 286 |
+
{
|
| 287 |
+
"cell_type": "code",
|
| 288 |
+
"execution_count": 52,
|
| 289 |
+
"id": "e1309e93-7063-4f48-bbc7-11a0d449c34e",
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"outputs": [
|
| 292 |
+
{
|
| 293 |
+
"name": "stdout",
|
| 294 |
+
"output_type": "stream",
|
| 295 |
+
"text": [
|
| 296 |
+
"ROC-AUC Score for High Graduation Rate Group: 0.675\n",
|
| 297 |
+
"ROC-AUC Score for Low Graduation Rate Group: 0.7489795918367347\n"
|
| 298 |
+
]
|
| 299 |
+
}
|
| 300 |
+
],
|
| 301 |
+
"source": [
|
| 302 |
+
"high_roc_auc = roc_auc_score(high_t_labels, high_p_labels) if len(set(high_t_labels)) > 1 else None\n",
|
| 303 |
+
"low_roc_auc = roc_auc_score(low_t_labels, low_p_labels) if len(set(low_t_labels)) > 1 else None\n",
|
| 304 |
+
"\n",
|
| 305 |
+
"print(\"ROC-AUC Score for High Graduation Rate Group:\", high_roc_auc)\n",
|
| 306 |
+
"print(\"ROC-AUC Score for Low Graduation Rate Group:\", low_roc_auc)"
|
| 307 |
+
]
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "code",
|
| 311 |
+
"execution_count": 9,
|
| 312 |
+
"id": "a99e7812-817d-4f9f-b6fa-1a58aa3a34dc",
|
| 313 |
+
"metadata": {},
|
| 314 |
+
"outputs": [
|
| 315 |
+
{
|
| 316 |
+
"name": "stdout",
|
| 317 |
+
"output_type": "stream",
|
| 318 |
+
"text": [
|
| 319 |
+
"Task Analysis Summary:\n",
|
| 320 |
+
"-----------------------\n",
|
| 321 |
+
"Ideal Task = OptionalTask_1:\n",
|
| 322 |
+
" Only OptionalTask_1 done: 22501\n",
|
| 323 |
+
" Only OptionalTask_2 done: 20014\n",
|
| 324 |
+
" Both done: 24854\n",
|
| 325 |
+
"Ideal Task = OptionalTask_2:\n",
|
| 326 |
+
" Only OptionalTask_1 done: 12588\n",
|
| 327 |
+
" Only OptionalTask_2 done: 18942\n",
|
| 328 |
+
" Both done: 15147\n",
|
| 329 |
+
"\n"
|
| 330 |
+
]
|
| 331 |
+
}
|
| 332 |
+
],
|
| 333 |
+
"source": [
|
| 334 |
+
"def analyze_row(row):\n",
|
| 335 |
+
" # Split the row into fields\n",
|
| 336 |
+
" fields = row.split(\"\\t\")\n",
|
| 337 |
+
"\n",
|
| 338 |
+
" # Define tasks for OptionalTask_1, OptionalTask_2, and FinalAnswer\n",
|
| 339 |
+
" optional_task_1_subtasks = [\"DenominatorFactor\", \"NumeratorFactor\", \"EquationAnswer\"]\n",
|
| 340 |
+
" optional_task_2_subtasks = [\n",
|
| 341 |
+
" \"FirstRow2:1\", \"FirstRow2:2\", \"FirstRow1:1\", \"FirstRow1:2\", \n",
|
| 342 |
+
" \"SecondRow\", \"ThirdRow\"\n",
|
| 343 |
+
" ]\n",
|
| 344 |
+
"\n",
|
| 345 |
+
" # Helper function to evaluate task attempts\n",
|
| 346 |
+
" def evaluate_tasks(fields, tasks):\n",
|
| 347 |
+
" task_status = {}\n",
|
| 348 |
+
" for task in tasks:\n",
|
| 349 |
+
" relevant_attempts = [f for f in fields if task in f]\n",
|
| 350 |
+
" if any(\"OK\" in attempt for attempt in relevant_attempts):\n",
|
| 351 |
+
" task_status[task] = \"Attempted (Successful)\"\n",
|
| 352 |
+
" elif any(\"ERROR\" in attempt for attempt in relevant_attempts):\n",
|
| 353 |
+
" task_status[task] = \"Attempted (Error)\"\n",
|
| 354 |
+
" elif any(\"JIT\" in attempt for attempt in relevant_attempts):\n",
|
| 355 |
+
" task_status[task] = \"Attempted (JIT)\"\n",
|
| 356 |
+
" else:\n",
|
| 357 |
+
" task_status[task] = \"Unattempted\"\n",
|
| 358 |
+
" return task_status\n",
|
| 359 |
+
"\n",
|
| 360 |
+
" # Evaluate tasks for each category\n",
|
| 361 |
+
" optional_task_1_status = evaluate_tasks(fields, optional_task_1_subtasks)\n",
|
| 362 |
+
" optional_task_2_status = evaluate_tasks(fields, optional_task_2_subtasks)\n",
|
| 363 |
+
"\n",
|
| 364 |
+
" # Check if tasks have any successful attempt\n",
|
| 365 |
+
" opt1_done = any(status == \"Attempted (Successful)\" for status in optional_task_1_status.values())\n",
|
| 366 |
+
" opt2_done = any(status == \"Attempted (Successful)\" for status in optional_task_2_status.values())\n",
|
| 367 |
+
"\n",
|
| 368 |
+
" return opt1_done, opt2_done\n",
|
| 369 |
+
"\n",
|
| 370 |
+
"# Read data from test_info.txt\n",
|
| 371 |
+
"# Read data from test_info.txt\n",
|
| 372 |
+
"with open(test_info_location, \"r\") as file:\n",
|
| 373 |
+
" data = file.readlines()\n",
|
| 374 |
+
"\n",
|
| 375 |
+
"# Assuming test_info[7] is a list with ideal tasks for each instance\n",
|
| 376 |
+
"ideal_tasks = test_info[6] # A list where each element is either 1 or 2\n",
|
| 377 |
+
"\n",
|
| 378 |
+
"# Initialize counters\n",
|
| 379 |
+
"task_counts = {\n",
|
| 380 |
+
" 1: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0},\n",
|
| 381 |
+
" 2: {\"only_opt1\": 0, \"only_opt2\": 0, \"both\": 0}\n",
|
| 382 |
+
"}\n",
|
| 383 |
+
"\n",
|
| 384 |
+
"# Analyze rows\n",
|
| 385 |
+
"for i, row in enumerate(data):\n",
|
| 386 |
+
" row = row.strip()\n",
|
| 387 |
+
" if not row:\n",
|
| 388 |
+
" continue\n",
|
| 389 |
+
"\n",
|
| 390 |
+
" ideal_task = ideal_tasks[i] # Get the ideal task for the current row\n",
|
| 391 |
+
" opt1_done, opt2_done = analyze_row(row)\n",
|
| 392 |
+
"\n",
|
| 393 |
+
" if ideal_task == 0:\n",
|
| 394 |
+
" if opt1_done and not opt2_done:\n",
|
| 395 |
+
" task_counts[1][\"only_opt1\"] += 1\n",
|
| 396 |
+
" elif not opt1_done and opt2_done:\n",
|
| 397 |
+
" task_counts[1][\"only_opt2\"] += 1\n",
|
| 398 |
+
" elif opt1_done and opt2_done:\n",
|
| 399 |
+
" task_counts[1][\"both\"] += 1\n",
|
| 400 |
+
" elif ideal_task == 1:\n",
|
| 401 |
+
" if opt1_done and not opt2_done:\n",
|
| 402 |
+
" task_counts[2][\"only_opt1\"] += 1\n",
|
| 403 |
+
" elif not opt1_done and opt2_done:\n",
|
| 404 |
+
" task_counts[2][\"only_opt2\"] += 1\n",
|
| 405 |
+
" elif opt1_done and opt2_done:\n",
|
| 406 |
+
" task_counts[2][\"both\"] += 1\n",
|
| 407 |
+
"\n",
|
| 408 |
+
"# Create a string output for results\n",
|
| 409 |
+
"output_summary = \"Task Analysis Summary:\\n\"\n",
|
| 410 |
+
"output_summary += \"-----------------------\\n\"\n",
|
| 411 |
+
"\n",
|
| 412 |
+
"for ideal_task, counts in task_counts.items():\n",
|
| 413 |
+
" output_summary += f\"Ideal Task = OptionalTask_{ideal_task}:\\n\"\n",
|
| 414 |
+
" output_summary += f\" Only OptionalTask_1 done: {counts['only_opt1']}\\n\"\n",
|
| 415 |
+
" output_summary += f\" Only OptionalTask_2 done: {counts['only_opt2']}\\n\"\n",
|
| 416 |
+
" output_summary += f\" Both done: {counts['both']}\\n\"\n",
|
| 417 |
+
"\n",
|
| 418 |
+
"print(output_summary)\n"
|
| 419 |
+
]
|
| 420 |
+
},
|
| 421 |
+
{
|
| 422 |
+
"cell_type": "code",
|
| 423 |
+
"execution_count": null,
|
| 424 |
+
"id": "65ad9383-741f-44eb-8e8f-853ee7bc52a2",
|
| 425 |
+
"metadata": {},
|
| 426 |
+
"outputs": [],
|
| 427 |
+
"source": []
|
| 428 |
+
}
|
| 429 |
+
],
|
| 430 |
+
"metadata": {
|
| 431 |
+
"kernelspec": {
|
| 432 |
+
"display_name": "Python 3 (ipykernel)",
|
| 433 |
+
"language": "python",
|
| 434 |
+
"name": "python3"
|
| 435 |
+
},
|
| 436 |
+
"language_info": {
|
| 437 |
+
"codemirror_mode": {
|
| 438 |
+
"name": "ipython",
|
| 439 |
+
"version": 3
|
| 440 |
+
},
|
| 441 |
+
"file_extension": ".py",
|
| 442 |
+
"mimetype": "text/x-python",
|
| 443 |
+
"name": "python",
|
| 444 |
+
"nbconvert_exporter": "python",
|
| 445 |
+
"pygments_lexer": "ipython3",
|
| 446 |
+
"version": "3.12.4"
|
| 447 |
+
}
|
| 448 |
+
},
|
| 449 |
+
"nbformat": 4,
|
| 450 |
+
"nbformat_minor": 5
|
| 451 |
+
}
|
new_test_saved_finetuned_model.py
CHANGED
|
@@ -221,9 +221,12 @@ class BERTFineTuneTrainer:
|
|
| 221 |
for key, value in final_msg.items():
|
| 222 |
file.write(f"{key}: {value}\n")
|
| 223 |
print(final_msg)
|
|
|
|
| 224 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
| 225 |
with open("roc_data.pkl", "wb") as f:
|
| 226 |
pickle.dump((fpr, tpr, thresholds), f)
|
|
|
|
|
|
|
| 227 |
print(final_msg)
|
| 228 |
f.close()
|
| 229 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|
|
@@ -426,6 +429,7 @@ class BERTFineTuneCalibratedTrainer:
|
|
| 426 |
auc_score = roc_auc_score(tlabels, positive_class_probs)
|
| 427 |
end_time = time.time()
|
| 428 |
final_msg = {
|
|
|
|
| 429 |
"avg_loss": avg_loss / len(data_iter),
|
| 430 |
"total_acc": total_correct * 100.0 / total_element,
|
| 431 |
"precisions": precisions,
|
|
@@ -441,8 +445,7 @@ class BERTFineTuneCalibratedTrainer:
|
|
| 441 |
for key, value in final_msg.items():
|
| 442 |
file.write(f"{key}: {value}\n")
|
| 443 |
with open("plabels.txt","w") as file:
|
| 444 |
-
file.write(plabels)
|
| 445 |
-
|
| 446 |
print(final_msg)
|
| 447 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
| 448 |
f.close()
|
|
|
|
| 221 |
for key, value in final_msg.items():
|
| 222 |
file.write(f"{key}: {value}\n")
|
| 223 |
print(final_msg)
|
| 224 |
+
# print(type(plabels),type(tlabels),plabels,tlabels)
|
| 225 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
| 226 |
with open("roc_data.pkl", "wb") as f:
|
| 227 |
pickle.dump((fpr, tpr, thresholds), f)
|
| 228 |
+
with open("roc_data2.pkl", "wb") as f:
|
| 229 |
+
pickle.dump((tlabels,positive_class_probs), f)
|
| 230 |
print(final_msg)
|
| 231 |
f.close()
|
| 232 |
with open(self.log_folder_path+f"/log_{phase}_finetuned_info.txt", 'a') as f1:
|
|
|
|
| 429 |
auc_score = roc_auc_score(tlabels, positive_class_probs)
|
| 430 |
end_time = time.time()
|
| 431 |
final_msg = {
|
| 432 |
+
"this one":"this one",
|
| 433 |
"avg_loss": avg_loss / len(data_iter),
|
| 434 |
"total_acc": total_correct * 100.0 / total_element,
|
| 435 |
"precisions": precisions,
|
|
|
|
| 445 |
for key, value in final_msg.items():
|
| 446 |
file.write(f"{key}: {value}\n")
|
| 447 |
with open("plabels.txt","w") as file:
|
| 448 |
+
file.write(plabels)
|
|
|
|
| 449 |
print(final_msg)
|
| 450 |
fpr, tpr, thresholds = roc_curve(tlabels, positive_class_probs)
|
| 451 |
f.close()
|
result.txt
CHANGED
|
@@ -3,5 +3,5 @@ total_acc: 69.00702106318957
|
|
| 3 |
precisions: 0.7236623191454734
|
| 4 |
recalls: 0.6900702106318957
|
| 5 |
f1_scores: 0.6802420656474512
|
| 6 |
-
time_taken_from_start:
|
| 7 |
auc_score: 0.7457100293916334
|
|
|
|
| 3 |
precisions: 0.7236623191454734
|
| 4 |
recalls: 0.6900702106318957
|
| 5 |
f1_scores: 0.6802420656474512
|
| 6 |
+
time_taken_from_start: 21.604072332382202
|
| 7 |
auc_score: 0.7457100293916334
|
roc_data2.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41fa9d96833c12979f8495141ee61c0ba07d4a20c5fb5bc18a7f72bf4d15e8fd
|
| 3 |
+
size 28023
|