Spaces:
Sleeping
Sleeping
| import argparse | |
| import os | |
| import sys | |
| import torch | |
| import torch.nn as nn | |
| from torch.utils.data import DataLoader, random_split, TensorDataset | |
| from src.dataset import TokenizerDataset | |
| from src.bert import BERT | |
| from src.pretrainer import BERTFineTuneTrainer1 | |
| from src.vocab import Vocab | |
| import pandas as pd | |
| # class CustomBERTModel(nn.Module): | |
| # def __init__(self, vocab_size, output_dim, pre_trained_model_path): | |
| # super(CustomBERTModel, self).__init__() | |
| # hidden_size = 768 | |
| # self.bert = BERT(vocab_size=vocab_size, hidden=hidden_size, n_layers=12, attn_heads=12, dropout=0.1) | |
| # checkpoint = torch.load(pre_trained_model_path, map_location=torch.device('cpu')) | |
| # if isinstance(checkpoint, dict): | |
| # self.bert.load_state_dict(checkpoint) | |
| # elif isinstance(checkpoint, BERT): | |
| # self.bert = checkpoint | |
| # else: | |
| # raise TypeError(f"Expected state_dict or BERT instance, got {type(checkpoint)} instead.") | |
| # self.fc = nn.Linear(hidden_size, output_dim) | |
| # def forward(self, sequence, segment_info): | |
| # sequence = sequence.to(next(self.parameters()).device) | |
| # segment_info = segment_info.to(sequence.device) | |
| # if sequence.size(0) == 0 or sequence.size(1) == 0: | |
| # raise ValueError("Input sequence tensor has 0 elements. Check data preprocessing.") | |
| # x = self.bert(sequence, segment_info) | |
| # print(f"BERT output shape: {x.shape}") | |
| # if x.size(0) == 0 or x.size(1) == 0: | |
| # raise ValueError("BERT output tensor has 0 elements. Check input dimensions.") | |
| # cls_embeddings = x[:, 0] | |
| # logits = self.fc(cls_embeddings) | |
| # return logits | |
| # class CustomBERTModel(nn.Module): | |
| # def __init__(self, vocab_size, output_dim, pre_trained_model_path): | |
| # super(CustomBERTModel, self).__init__() | |
| # hidden_size = 764 # Ensure this is 768 | |
| # self.bert = BERT(vocab_size=vocab_size, hidden=hidden_size, n_layers=12, attn_heads=12, dropout=0.1) | |
| # # Load the pre-trained model's state_dict | |
| # checkpoint = torch.load(pre_trained_model_path, map_location=torch.device('cpu')) | |
| # if isinstance(checkpoint, dict): | |
| # self.bert.load_state_dict(checkpoint) | |
| # else: | |
| # raise TypeError(f"Expected state_dict, got {type(checkpoint)} instead.") | |
| # # Fully connected layer with input size 768 | |
| # self.fc = nn.Linear(hidden_size, output_dim) | |
| # def forward(self, sequence, segment_info): | |
| # sequence = sequence.to(next(self.parameters()).device) | |
| # segment_info = segment_info.to(sequence.device) | |
| # x = self.bert(sequence, segment_info) | |
| # print(f"BERT output shape: {x.shape}") # Should output (batch_size, seq_len, 768) | |
| # cls_embeddings = x[:, 0] # Extract CLS token embeddings | |
| # print(f"CLS Embeddings shape: {cls_embeddings.shape}") # Should output (batch_size, 768) | |
| # logits = self.fc(cls_embeddings) # Should now pass a tensor of size (batch_size, 768) to `fc` | |
| # return logits | |
| # for test | |
| class CustomBERTModel(nn.Module): | |
| def __init__(self, vocab_size, output_dim, pre_trained_model_path): | |
| super(CustomBERTModel, self).__init__() | |
| self.hidden = 764 # Ensure this is defined correctly | |
| self.bert = BERT(vocab_size=vocab_size, hidden=self.hidden, n_layers=12, attn_heads=12, dropout=0.1) | |
| # Load the pre-trained model's state_dict | |
| checkpoint = torch.load(pre_trained_model_path, map_location=torch.device('cpu')) | |
| if isinstance(checkpoint, dict): | |
| self.bert.load_state_dict(checkpoint) | |
| else: | |
| raise TypeError(f"Expected state_dict, got {type(checkpoint)} instead.") | |
| self.fc = nn.Linear(self.hidden, output_dim) | |
| def forward(self, sequence, segment_info): | |
| x = self.bert(sequence, segment_info) | |
| cls_embeddings = x[:, 0] # Extract CLS token embeddings | |
| logits = self.fc(cls_embeddings) # Pass to fully connected layer | |
| return logits | |
| def preprocess_labels(label_csv_path): | |
| try: | |
| labels_df = pd.read_csv(label_csv_path) | |
| labels = labels_df['last_hint_class'].values.astype(int) | |
| return torch.tensor(labels, dtype=torch.long) | |
| except Exception as e: | |
| print(f"Error reading dataset file: {e}") | |
| return None | |
| def preprocess_data(data_path, vocab, max_length=128): | |
| try: | |
| with open(data_path, 'r') as f: | |
| sequences = f.readlines() | |
| except Exception as e: | |
| print(f"Error reading data file: {e}") | |
| return None, None | |
| if len(sequences) == 0: | |
| raise ValueError(f"No sequences found in data file {data_path}. Check the file content.") | |
| tokenized_sequences = [] | |
| for sequence in sequences: | |
| sequence = sequence.strip() | |
| if sequence: | |
| encoded = vocab.to_seq(sequence, seq_len=max_length) | |
| encoded = encoded[:max_length] + [vocab.vocab.get('[PAD]', 0)] * (max_length - len(encoded)) | |
| segment_label = [0] * max_length | |
| tokenized_sequences.append({ | |
| 'input_ids': torch.tensor(encoded), | |
| 'segment_label': torch.tensor(segment_label) | |
| }) | |
| if not tokenized_sequences: | |
| raise ValueError("Tokenization resulted in an empty list. Check the sequences and tokenization logic.") | |
| tokenized_sequences = [t for t in tokenized_sequences if len(t['input_ids']) == max_length] | |
| if not tokenized_sequences: | |
| raise ValueError("All tokenized sequences are of unexpected length. This suggests an issue with the tokenization logic.") | |
| input_ids = torch.cat([t['input_ids'].unsqueeze(0) for t in tokenized_sequences], dim=0) | |
| segment_labels = torch.cat([t['segment_label'].unsqueeze(0) for t in tokenized_sequences], dim=0) | |
| print(f"Input IDs shape: {input_ids.shape}") | |
| print(f"Segment labels shape: {segment_labels.shape}") | |
| return input_ids, segment_labels | |
| def collate_fn(batch): | |
| inputs = [] | |
| labels = [] | |
| segment_labels = [] | |
| for item in batch: | |
| if item is None: | |
| continue | |
| if isinstance(item, dict): | |
| inputs.append(item['input_ids'].unsqueeze(0)) | |
| labels.append(item['label'].unsqueeze(0)) | |
| segment_labels.append(item['segment_label'].unsqueeze(0)) | |
| if len(inputs) == 0 or len(segment_labels) == 0: | |
| print("Empty batch encountered. Returning None to skip this batch.") | |
| return None | |
| try: | |
| inputs = torch.cat(inputs, dim=0) | |
| labels = torch.cat(labels, dim=0) | |
| segment_labels = torch.cat(segment_labels, dim=0) | |
| except Exception as e: | |
| print(f"Error concatenating tensors: {e}") | |
| return None | |
| return { | |
| 'input': inputs, | |
| 'label': labels, | |
| 'segment_label': segment_labels | |
| } | |
| def custom_collate_fn(batch): | |
| processed_batch = collate_fn(batch) | |
| if processed_batch is None or len(processed_batch['input']) == 0: | |
| # Return a valid batch with at least one element instead of an empty one | |
| return { | |
| 'input': torch.zeros((1, 128), dtype=torch.long), | |
| 'label': torch.zeros((1,), dtype=torch.long), | |
| 'segment_label': torch.zeros((1, 128), dtype=torch.long) | |
| } | |
| return processed_batch | |
| def train_without_progress_status(trainer, epoch, shuffle): | |
| for epoch_idx in range(epoch): | |
| print(f"EP_train:{epoch_idx}:") | |
| for batch in trainer.train_data: | |
| if batch is None: | |
| continue | |
| # Check if batch is a string (indicating an issue) | |
| if isinstance(batch, str): | |
| print(f"Error: Received a string instead of a dictionary in batch: {batch}") | |
| raise ValueError(f"Unexpected string in batch: {batch}") | |
| # Validate the batch structure before passing to iteration | |
| if isinstance(batch, dict): | |
| # Verify that all expected keys are present and that the values are tensors | |
| if all(key in batch for key in ['input_ids', 'segment_label', 'labels']): | |
| if all(isinstance(batch[key], torch.Tensor) for key in batch): | |
| try: | |
| print(f"Batch Structure: {batch}") # Debugging batch before iteration | |
| trainer.iteration(epoch_idx, batch) | |
| except Exception as e: | |
| print(f"Error during batch processing: {e}") | |
| sys.stdout.flush() | |
| raise e # Propagate the exception for better debugging | |
| else: | |
| print(f"Error: Expected all values in batch to be tensors, but got: {batch}") | |
| raise ValueError("Batch contains non-tensor values.") | |
| else: | |
| print(f"Error: Batch missing expected keys. Batch keys: {batch.keys()}") | |
| raise ValueError("Batch does not contain expected keys.") | |
| else: | |
| print(f"Error: Expected batch to be a dictionary but got {type(batch)} instead.") | |
| raise ValueError(f"Invalid batch structure: {batch}") | |
| # def main(opt): | |
| # # device = torch.device("cpu") | |
| # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # vocab = Vocab(opt.vocab_file) | |
| # vocab.load_vocab() | |
| # input_ids, segment_labels = preprocess_data(opt.data_path, vocab, max_length=128) | |
| # labels = preprocess_labels(opt.dataset) | |
| # if input_ids is None or segment_labels is None or labels is None: | |
| # print("Error in preprocessing data. Exiting.") | |
| # return | |
| # dataset = TensorDataset(input_ids, segment_labels, torch.tensor(labels, dtype=torch.long)) | |
| # val_size = len(dataset) - int(0.8 * len(dataset)) | |
| # val_dataset, train_dataset = random_split(dataset, [val_size, len(dataset) - val_size]) | |
| # train_dataloader = DataLoader( | |
| # train_dataset, | |
| # batch_size=32, | |
| # shuffle=True, | |
| # collate_fn=custom_collate_fn | |
| # ) | |
| # val_dataloader = DataLoader( | |
| # val_dataset, | |
| # batch_size=32, | |
| # shuffle=False, | |
| # collate_fn=custom_collate_fn | |
| # ) | |
| # custom_model = CustomBERTModel( | |
| # vocab_size=len(vocab.vocab), | |
| # output_dim=2, | |
| # pre_trained_model_path=opt.pre_trained_model_path | |
| # ).to(device) | |
| # trainer = BERTFineTuneTrainer1( | |
| # bert=custom_model.bert, | |
| # vocab_size=len(vocab.vocab), | |
| # train_dataloader=train_dataloader, | |
| # test_dataloader=val_dataloader, | |
| # lr=5e-5, | |
| # num_labels=2, | |
| # with_cuda=torch.cuda.is_available(), | |
| # log_freq=10, | |
| # workspace_name=opt.output_dir, | |
| # log_folder_path=opt.log_folder_path | |
| # ) | |
| # trainer.train(epoch=20) | |
| # # os.makedirs(opt.output_dir, exist_ok=True) | |
| # # output_model_file = os.path.join(opt.output_dir, 'fine_tuned_model.pth') | |
| # # torch.save(custom_model.state_dict(), output_model_file) | |
| # # print(f'Model saved to {output_model_file}') | |
| # os.makedirs(opt.output_dir, exist_ok=True) | |
| # output_model_file = os.path.join(opt.output_dir, 'fine_tuned_model_2.pth') | |
| # torch.save(custom_model, output_model_file) | |
| # print(f'Model saved to {output_model_file}') | |
| def main(opt): | |
| # Set device to GPU if available, otherwise use CPU | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| print(torch.cuda.is_available()) # Should return True if GPU is available | |
| print(torch.cuda.device_count()) | |
| # Load vocabulary | |
| vocab = Vocab(opt.vocab_file) | |
| vocab.load_vocab() | |
| # Preprocess data and labels | |
| input_ids, segment_labels = preprocess_data(opt.data_path, vocab, max_length=128) | |
| labels = preprocess_labels(opt.dataset) | |
| if input_ids is None or segment_labels is None or labels is None: | |
| print("Error in preprocessing data. Exiting.") | |
| return | |
| # Transfer tensors to the correct device (GPU/CPU) | |
| input_ids = input_ids.to(device) | |
| segment_labels = segment_labels.to(device) | |
| labels = torch.tensor(labels, dtype=torch.long).to(device) | |
| # Create TensorDataset and split into train and validation sets | |
| dataset = TensorDataset(input_ids, segment_labels, labels) | |
| val_size = len(dataset) - int(0.8 * len(dataset)) | |
| val_dataset, train_dataset = random_split(dataset, [val_size, len(dataset) - val_size]) | |
| # Create DataLoaders for training and validation | |
| train_dataloader = DataLoader( | |
| train_dataset, | |
| batch_size=32, | |
| shuffle=True, | |
| collate_fn=custom_collate_fn | |
| ) | |
| val_dataloader = DataLoader( | |
| val_dataset, | |
| batch_size=32, | |
| shuffle=False, | |
| collate_fn=custom_collate_fn | |
| ) | |
| # Initialize custom BERT model and move it to the device | |
| custom_model = CustomBERTModel( | |
| vocab_size=len(vocab.vocab), | |
| output_dim=2, | |
| pre_trained_model_path=opt.pre_trained_model_path | |
| ).to(device) | |
| # Initialize the fine-tuning trainer | |
| trainer = BERTFineTuneTrainer1( | |
| bert=custom_model.bert, | |
| vocab_size=len(vocab.vocab), | |
| train_dataloader=train_dataloader, | |
| test_dataloader=val_dataloader, | |
| lr=5e-5, | |
| num_labels=2, | |
| with_cuda=torch.cuda.is_available(), | |
| log_freq=10, | |
| workspace_name=opt.output_dir, | |
| log_folder_path=opt.log_folder_path | |
| ) | |
| # Train the model | |
| trainer.train(epoch=20) | |
| # Save the model to the specified output directory | |
| # os.makedirs(opt.output_dir, exist_ok=True) | |
| # output_model_file = os.path.join(opt.output_dir, 'fine_tuned_model_2.pth') | |
| # torch.save(custom_model.state_dict(), output_model_file) | |
| # print(f'Model saved to {output_model_file}') | |
| os.makedirs(opt.output_dir, exist_ok=True) | |
| output_model_file = os.path.join(opt.output_dir, 'fine_tuned_model_2.pth') | |
| torch.save(custom_model, output_model_file) | |
| print(f'Model saved to {output_model_file}') | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser(description='Fine-tune BERT model.') | |
| parser.add_argument('--dataset', type=str, default='/home/jupyter/bert/dataset/hint_based/ratio_proportion_change_3/er/er_train.csv', help='Path to the dataset file.') | |
| parser.add_argument('--data_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/gt/er.txt', help='Path to the input sequence file.') | |
| parser.add_argument('--output_dir', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/output/hint_classification', help='Directory to save the fine-tuned model.') | |
| parser.add_argument('--pre_trained_model_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/output/pretrain:1800ms:64hs:4l:8a:50s:64b:1000e:-5lr/bert_trained.seq_encoder.model.ep68', help='Path to the pre-trained BERT model.') | |
| parser.add_argument('--vocab_file', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/_Aug23/pretraining/vocab.txt', help='Path to the vocabulary file.') | |
| parser.add_argument('--log_folder_path', type=str, default='/home/jupyter/bert/ratio_proportion_change3_1920/logs/oct_logs', help='Path to the folder for saving logs.') | |
| opt = parser.parse_args() | |
| main(opt) |