Update app.py
Browse files
app.py
CHANGED
|
@@ -8,8 +8,6 @@ import io
|
|
| 8 |
import cv2
|
| 9 |
import easyocr
|
| 10 |
import os
|
| 11 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 12 |
-
from sklearn.datasets import make_classification
|
| 13 |
import plotly.graph_objects as go
|
| 14 |
import plotly.express as px
|
| 15 |
from datetime import datetime
|
|
@@ -17,9 +15,7 @@ import requests
|
|
| 17 |
import json
|
| 18 |
import base64
|
| 19 |
import tempfile
|
| 20 |
-
import
|
| 21 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 22 |
-
import torch
|
| 23 |
|
| 24 |
# Set page config first
|
| 25 |
st.set_page_config(
|
|
@@ -104,71 +100,54 @@ def init_session_state():
|
|
| 104 |
st.session_state.risk_scores = {}
|
| 105 |
if 'chat_history' not in st.session_state:
|
| 106 |
st.session_state.chat_history = []
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Load trained models
|
| 109 |
@st.cache_resource(show_spinner=False)
|
| 110 |
def load_models():
|
| 111 |
try:
|
| 112 |
-
#
|
| 113 |
-
#
|
| 114 |
-
|
| 115 |
|
| 116 |
-
#
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
np.random.randn(1000) * 0.1 > 0).astype(int)
|
| 124 |
-
model.fit(X_heart, y_heart)
|
| 125 |
-
return model
|
| 126 |
-
|
| 127 |
-
def create_trained_diabetes_model():
|
| 128 |
-
# Simulate a trained diabetes model
|
| 129 |
-
model = RandomForestClassifier(n_estimators=100, random_state=42, max_depth=10)
|
| 130 |
-
X_diabetes = np.random.randn(1000, 7) # 7 features for diabetes
|
| 131 |
-
y_diabetes = (X_diabetes[:, 0] * 0.8 + X_diabetes[:, 1] * 0.6 +
|
| 132 |
-
X_diabetes[:, 2] * 0.4 + np.random.randn(1000) * 0.1 > 0).astype(int)
|
| 133 |
-
model.fit(X_diabetes, y_diabetes)
|
| 134 |
-
return model
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
return model
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
-
return
|
| 150 |
|
| 151 |
except Exception as e:
|
| 152 |
st.error(f"❌ Error loading models: {str(e)}")
|
| 153 |
return None, None, None
|
| 154 |
|
| 155 |
-
#
|
| 156 |
-
|
| 157 |
-
def load_chatbot_model():
|
| 158 |
try:
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# Using a smaller model for demonstration
|
| 162 |
-
chatbot = pipeline(
|
| 163 |
-
"text-generation",
|
| 164 |
-
model="microsoft/DialoGPT-small",
|
| 165 |
-
tokenizer="microsoft/DialoGPT-small",
|
| 166 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 167 |
-
device=0 if torch.cuda.is_available() else -1
|
| 168 |
-
)
|
| 169 |
-
return chatbot
|
| 170 |
except Exception as e:
|
| 171 |
-
st.
|
| 172 |
return None
|
| 173 |
|
| 174 |
# Urdu translations
|
|
@@ -283,97 +262,57 @@ class OCRProcessor:
|
|
| 283 |
return min(95, accuracy) # Cap at 95% for realistic estimates
|
| 284 |
|
| 285 |
class HealthcareChatbot:
|
| 286 |
-
def __init__(self):
|
| 287 |
-
self.
|
| 288 |
-
self.
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
'prevention': 'Maintain healthy diet, exercise regularly, avoid smoking.'
|
| 293 |
-
},
|
| 294 |
-
'diabetes': {
|
| 295 |
-
'symptoms': ['frequent urination', 'increased thirst', 'fatigue', 'blurred vision'],
|
| 296 |
-
'advice': 'Monitor blood sugar levels and follow medical advice.',
|
| 297 |
-
'prevention': 'Maintain healthy weight and balanced diet.'
|
| 298 |
-
},
|
| 299 |
-
'hypertension': {
|
| 300 |
-
'symptoms': ['headache', 'dizziness', 'blurred vision', 'chest pain'],
|
| 301 |
-
'advice': 'Regular blood pressure monitoring and medication adherence.',
|
| 302 |
-
'prevention': 'Reduce salt intake, exercise, manage stress.'
|
| 303 |
-
}
|
| 304 |
-
}
|
| 305 |
|
| 306 |
-
def
|
| 307 |
-
"""Generate
|
| 308 |
try:
|
| 309 |
-
if self.
|
| 310 |
-
return "
|
| 311 |
-
|
| 312 |
-
# Medical context prompt
|
| 313 |
-
medical_prompt = f"""As a healthcare assistant, provide helpful but cautious information about: {query}
|
| 314 |
-
|
| 315 |
-
Important guidelines:
|
| 316 |
-
- Always recommend consulting healthcare professionals
|
| 317 |
-
- Provide general wellness information
|
| 318 |
-
- Do not diagnose or prescribe medication
|
| 319 |
-
- Focus on prevention and healthy habits
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
disclaimer = "\n\n*Note: This is AI-generated information. Please consult healthcare professionals for medical advice.*"
|
| 338 |
-
return response + disclaimer
|
| 339 |
|
| 340 |
except Exception as e:
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
# Detect medical conditions
|
| 348 |
-
if any(word in query_lower for word in ['heart', 'cardiac', 'chest pain', 'cholesterol']):
|
| 349 |
-
condition = 'heart_disease'
|
| 350 |
-
elif any(word in query_lower for word in ['diabetes', 'sugar', 'glucose', 'insulin']):
|
| 351 |
-
condition = 'diabetes'
|
| 352 |
-
elif any(word in query_lower for word in ['blood pressure', 'hypertension', 'bp']):
|
| 353 |
-
condition = 'hypertension'
|
| 354 |
-
else:
|
| 355 |
-
condition = None
|
| 356 |
-
|
| 357 |
-
if condition and language == 'English':
|
| 358 |
-
# Use medical knowledge base for specific conditions
|
| 359 |
-
info = self.medical_knowledge_base[condition]
|
| 360 |
-
response = f"**About {condition.replace('_', ' ').title()}:**\n\n"
|
| 361 |
-
response += f"**Common symptoms:** {', '.join(info['symptoms'])}\n\n"
|
| 362 |
-
response += f"**General advice:** {info['advice']}\n\n"
|
| 363 |
-
response += f"**Prevention tips:** {info['prevention']}\n\n"
|
| 364 |
-
response += "*Consult a healthcare professional for proper diagnosis and treatment.*"
|
| 365 |
-
return response
|
| 366 |
-
elif condition and language == 'Urdu':
|
| 367 |
-
# Urdu responses for medical conditions
|
| 368 |
-
urdu_responses = {
|
| 369 |
-
'heart_disease': "دل کی بیماری کے بارے میں: عام علامات میں سینے میں درد، سانس لینے میں دشواری، تھکاوٹ شامل ہیں۔ براہ کرم ماہر امراض قلب سے مشورہ کریں۔",
|
| 370 |
-
'diabetes': "ذیابیطس کے بارے میں: عام علامات میں بار بار پیشاب آنا، پیاس لگنا، تھکاوٹ شامل ہیں۔ اپنے ڈاکٹر سے رابطہ کریں۔",
|
| 371 |
-
'hypertension': "ہائی بلڈ پریشر کے بارے میں: عام علامات میں سر درد، چکر آنا، دھندلا نظر آنا شامل ہیں۔ باقاعدہ چیک اپ کروائیں۔"
|
| 372 |
-
}
|
| 373 |
-
return urdu_responses.get(condition, "براہ کرم ڈاکٹر سے مشورہ کریں۔")
|
| 374 |
-
else:
|
| 375 |
-
# Use AI model for general questions
|
| 376 |
-
return self.get_medical_response(query)
|
| 377 |
|
| 378 |
def calculate_priority_score(heart_risk, diabetes_risk, hypertension_risk):
|
| 379 |
"""Calculate integrated priority score with clinical weighting"""
|
|
@@ -419,40 +358,44 @@ def validate_patient_data(age, bp_systolic, bp_diastolic, heart_rate):
|
|
| 419 |
|
| 420 |
return errors
|
| 421 |
|
| 422 |
-
def
|
| 423 |
-
"""
|
| 424 |
-
|
|
|
|
| 425 |
heart_features = np.array([[
|
| 426 |
-
age,
|
| 427 |
bp_systolic,
|
| 428 |
cholesterol,
|
| 429 |
heart_rate,
|
|
|
|
|
|
|
|
|
|
| 430 |
bmi,
|
| 431 |
-
|
| 432 |
-
1 if symptoms.get('shortness_breath') else 0,
|
| 433 |
-
1 if symptoms.get('palpitations') else 0
|
| 434 |
]])
|
| 435 |
|
| 436 |
-
# Diabetes
|
| 437 |
diabetes_features = np.array([[
|
| 438 |
age,
|
| 439 |
glucose,
|
| 440 |
bmi,
|
| 441 |
cholesterol,
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
|
|
|
| 445 |
]])
|
| 446 |
|
| 447 |
-
# Hypertension
|
| 448 |
hypertension_features = np.array([[
|
| 449 |
age,
|
| 450 |
bp_systolic,
|
| 451 |
bp_diastolic,
|
| 452 |
bmi,
|
|
|
|
|
|
|
| 453 |
heart_rate,
|
| 454 |
-
|
| 455 |
-
1 if symptoms.get('palpitations') else 0
|
| 456 |
]])
|
| 457 |
|
| 458 |
return heart_features, diabetes_features, hypertension_features
|
|
@@ -468,13 +411,28 @@ def main():
|
|
| 468 |
|
| 469 |
# Initialize processors
|
| 470 |
ocr_processor = OCRProcessor()
|
| 471 |
-
chatbot = HealthcareChatbot()
|
| 472 |
|
| 473 |
# Language selector in sidebar
|
| 474 |
with st.sidebar:
|
| 475 |
st.markdown("<h2 style='text-align: center; color: #2E86AB;'>🏥 AI-Priority OPD</h2>",
|
| 476 |
unsafe_allow_html=True)
|
| 477 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
language = st.radio(
|
| 479 |
"Select Language / زبان منتخب کریں",
|
| 480 |
["English", "Urdu"],
|
|
@@ -490,14 +448,6 @@ def main():
|
|
| 490 |
st.session_state.risk_scores = {}
|
| 491 |
st.session_state.chat_history = []
|
| 492 |
st.rerun()
|
| 493 |
-
|
| 494 |
-
st.info("""
|
| 495 |
-
**System Features:**
|
| 496 |
-
- Patient Risk Assessment
|
| 497 |
-
- Prescription OCR
|
| 498 |
-
- Health Assistant
|
| 499 |
-
- Clinical Analytics
|
| 500 |
-
""")
|
| 501 |
else:
|
| 502 |
st.subheader("فوری اقدامات")
|
| 503 |
if st.button("🆕 نیا مریض تشخیص", use_container_width=True):
|
|
@@ -505,14 +455,6 @@ def main():
|
|
| 505 |
st.session_state.risk_scores = {}
|
| 506 |
st.session_state.chat_history = []
|
| 507 |
st.rerun()
|
| 508 |
-
|
| 509 |
-
st.info("""
|
| 510 |
-
**سسٹم کی خصوصیات:**
|
| 511 |
-
- مریض کے خطرے کا اندازہ
|
| 512 |
-
- نسخہ OCR
|
| 513 |
-
- ہیلتھ اسسٹنٹ
|
| 514 |
-
- کلینیکل تجزیات
|
| 515 |
-
""")
|
| 516 |
|
| 517 |
# Main header
|
| 518 |
if language == "English":
|
|
@@ -582,10 +524,10 @@ def main():
|
|
| 582 |
help="سسٹولک بلڈ پریشر mmHg میں")
|
| 583 |
bp_diastolic = st.number_input("بلڈ پریشر (ڈائیسٹولک)",
|
| 584 |
min_value=40, max_value=150, value=80,
|
| 585 |
-
|
| 586 |
heart_rate = st.number_input("دل کی دھڑکن (bpm)",
|
| 587 |
min_value=30, max_value=200, value=72,
|
| 588 |
-
|
| 589 |
cholesterol = st.number_input("کولیسٹرول کی سطح (mg/dL)",
|
| 590 |
min_value=100, max_value=400, value=180)
|
| 591 |
glucose = st.number_input("خون میں گلوکوز (mg/dL)",
|
|
@@ -631,21 +573,23 @@ def main():
|
|
| 631 |
if validation_errors:
|
| 632 |
for error in validation_errors:
|
| 633 |
st.error(f"❌ {error}")
|
|
|
|
|
|
|
| 634 |
else:
|
| 635 |
try:
|
| 636 |
with st.spinner("🔍 Analyzing patient data and calculating risks..."):
|
| 637 |
# Prepare symptoms dictionary
|
| 638 |
symptoms_dict = {
|
| 639 |
-
'chest_pain': chest_pain,
|
| 640 |
-
'shortness_breath': shortness_breath,
|
| 641 |
-
'palpitations': palpitations,
|
| 642 |
-
'fatigue': fatigue,
|
| 643 |
-
'dizziness': dizziness,
|
| 644 |
-
'blurred_vision': blurred_vision
|
| 645 |
}
|
| 646 |
|
| 647 |
-
#
|
| 648 |
-
heart_features, diabetes_features, hypertension_features =
|
| 649 |
age, bp_systolic, bp_diastolic, heart_rate, cholesterol, glucose, bmi, symptoms_dict
|
| 650 |
)
|
| 651 |
|
|
@@ -654,26 +598,16 @@ def main():
|
|
| 654 |
diabetes_risk_proba = diabetes_model.predict_proba(diabetes_features)[0][1]
|
| 655 |
hypertension_risk_proba = hypertension_model.predict_proba(hypertension_features)[0][1]
|
| 656 |
|
| 657 |
-
# Apply symptom modifiers
|
| 658 |
if chest_pain:
|
| 659 |
heart_risk_proba = min(1.0, heart_risk_proba * 1.3)
|
| 660 |
if shortness_breath:
|
| 661 |
heart_risk_proba = min(1.0, heart_risk_proba * 1.2)
|
| 662 |
-
if palpitations:
|
| 663 |
-
heart_risk_proba = min(1.0, heart_risk_proba * 1.15)
|
| 664 |
-
hypertension_risk_proba = min(1.0, hypertension_risk_proba * 1.1)
|
| 665 |
-
|
| 666 |
if fatigue:
|
| 667 |
diabetes_risk_proba = min(1.0, diabetes_risk_proba * 1.2)
|
| 668 |
-
heart_risk_proba = min(1.0, heart_risk_proba * 1.1)
|
| 669 |
-
|
| 670 |
if dizziness:
|
| 671 |
hypertension_risk_proba = min(1.0, hypertension_risk_proba * 1.3)
|
| 672 |
|
| 673 |
-
if blurred_vision:
|
| 674 |
-
diabetes_risk_proba = min(1.0, diabetes_risk_proba * 1.25)
|
| 675 |
-
hypertension_risk_proba = min(1.0, hypertension_risk_proba * 1.15)
|
| 676 |
-
|
| 677 |
# Calculate integrated priority score
|
| 678 |
priority_score = calculate_priority_score(
|
| 679 |
heart_risk_proba, diabetes_risk_proba, hypertension_risk_proba
|
|
@@ -770,7 +704,7 @@ def main():
|
|
| 770 |
|
| 771 |
except Exception as e:
|
| 772 |
st.error(f"❌ Error in risk assessment: {str(e)}")
|
| 773 |
-
st.info("💡 Please ensure all
|
| 774 |
|
| 775 |
with tab2:
|
| 776 |
# Prescription OCR
|
|
@@ -845,142 +779,155 @@ def main():
|
|
| 845 |
# Healthcare Chatbot
|
| 846 |
if language == "English":
|
| 847 |
st.header("💬 Healthcare Assistant Chatbot")
|
| 848 |
-
st.write("Ask health-related questions and get
|
| 849 |
else:
|
| 850 |
st.header("💬 ہیلتھ کیئر اسسٹنٹ چیٹ بوٹ")
|
| 851 |
-
st.write("صحت سے متعلق سوالات پوچھیں اور
|
| 852 |
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
with st.chat_message(message["role"]):
|
| 856 |
-
if message["role"] == "user":
|
| 857 |
-
st.markdown(message["content"])
|
| 858 |
-
else:
|
| 859 |
-
# Format bot response with better styling
|
| 860 |
-
st.markdown(f"**🤖 Healthcare Assistant:**\n\n{message['content']}")
|
| 861 |
-
|
| 862 |
-
# Chat input
|
| 863 |
-
if prompt := st.chat_input(
|
| 864 |
-
"Type your health question here..." if language == "English"
|
| 865 |
-
else "اپنا صحت کا سوال یہاں ٹائپ کریں..."
|
| 866 |
-
):
|
| 867 |
-
# Add user message to chat history
|
| 868 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
| 869 |
-
|
| 870 |
-
# Generate bot response
|
| 871 |
-
with st.chat_message("assistant"):
|
| 872 |
-
with st.spinner("💭 Analyzing your question..." if language == "English" else "💭 آپ کا سوال تجزیہ ہو رہا ہے..."):
|
| 873 |
-
response = chatbot.get_response(prompt, language)
|
| 874 |
-
st.markdown(f"**🤖 Healthcare Assistant:**\n\n{response}")
|
| 875 |
-
|
| 876 |
-
# Add assistant response to chat history
|
| 877 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
| 878 |
-
|
| 879 |
-
# Limit chat history to last 10 messages
|
| 880 |
-
if len(st.session_state.chat_history) > 10:
|
| 881 |
-
st.session_state.chat_history = st.session_state.chat_history[-10:]
|
| 882 |
-
|
| 883 |
-
# Quick action buttons
|
| 884 |
-
if language == "English":
|
| 885 |
-
st.subheader("Quick Health Topics")
|
| 886 |
else:
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
st.
|
| 906 |
-
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
|
| 911 |
-
|
| 912 |
-
|
| 913 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 914 |
|
| 915 |
with tab4:
|
| 916 |
# Analytics Dashboard
|
| 917 |
if language == "English":
|
| 918 |
-
st.header("📈
|
| 919 |
else:
|
| 920 |
-
st.header("📈
|
| 921 |
-
|
| 922 |
-
#
|
| 923 |
-
if
|
| 924 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 925 |
else:
|
| 926 |
-
st.subheader("ماڈل کارکردگی کے پیمانے")
|
| 927 |
-
|
| 928 |
-
performance_data = pd.DataFrame({
|
| 929 |
-
'Model': ['Heart Disease', 'Diabetes', 'Hypertension', 'Integrated'],
|
| 930 |
-
'Accuracy': ['88.2%', '85.7%', '86.1%', '87.3%'],
|
| 931 |
-
'Precision': ['86.5%', '83.2%', '85.4%', '84.8%'],
|
| 932 |
-
'Recall': ['89.1%', '84.3%', '87.2%', '86.5%'],
|
| 933 |
-
'AUC Score': ['0.891', '0.843', '0.872', '0.865']
|
| 934 |
-
})
|
| 935 |
-
|
| 936 |
-
st.dataframe(performance_data, use_container_width=True)
|
| 937 |
-
|
| 938 |
-
# Risk Distribution
|
| 939 |
-
col_chart1, col_chart2 = st.columns(2)
|
| 940 |
-
|
| 941 |
-
with col_chart1:
|
| 942 |
if language == "English":
|
| 943 |
-
st.
|
| 944 |
else:
|
| 945 |
-
st.
|
| 946 |
-
|
| 947 |
-
priority_data = pd.DataFrame({
|
| 948 |
-
'Priority': ['Emergency', 'Same Day', 'Routine'],
|
| 949 |
-
'Count': [18, 42, 65],
|
| 950 |
-
'Color': ['#dc3545', '#ffc107', '#28a745']
|
| 951 |
-
})
|
| 952 |
-
|
| 953 |
-
fig = px.pie(priority_data, values='Count', names='Priority',
|
| 954 |
-
color='Priority', color_discrete_map={
|
| 955 |
-
'Emergency': '#dc3545',
|
| 956 |
-
'Same Day': '#ffc107',
|
| 957 |
-
'Routine': '#28a745'
|
| 958 |
-
})
|
| 959 |
-
fig.update_traces(textposition='inside', textinfo='percent+label')
|
| 960 |
-
fig.update_layout(showlegend=False)
|
| 961 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 962 |
|
| 963 |
-
|
| 964 |
-
|
| 965 |
-
|
| 966 |
-
|
| 967 |
-
|
| 968 |
-
|
| 969 |
-
|
| 970 |
-
|
| 971 |
-
|
| 972 |
-
|
| 973 |
-
|
| 974 |
-
|
| 975 |
-
|
| 976 |
-
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 984 |
|
| 985 |
if __name__ == "__main__":
|
| 986 |
main()
|
|
|
|
| 8 |
import cv2
|
| 9 |
import easyocr
|
| 10 |
import os
|
|
|
|
|
|
|
| 11 |
import plotly.graph_objects as go
|
| 12 |
import plotly.express as px
|
| 13 |
from datetime import datetime
|
|
|
|
| 15 |
import json
|
| 16 |
import base64
|
| 17 |
import tempfile
|
| 18 |
+
from groq import Groq
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Set page config first
|
| 21 |
st.set_page_config(
|
|
|
|
| 100 |
st.session_state.risk_scores = {}
|
| 101 |
if 'chat_history' not in st.session_state:
|
| 102 |
st.session_state.chat_history = []
|
| 103 |
+
if 'groq_client' not in st.session_state:
|
| 104 |
+
st.session_state.groq_client = None
|
| 105 |
|
| 106 |
# Load trained models
|
| 107 |
@st.cache_resource(show_spinner=False)
|
| 108 |
def load_models():
|
| 109 |
try:
|
| 110 |
+
# Load your trained models
|
| 111 |
+
# Replace these paths with your actual model file paths
|
| 112 |
+
models = {}
|
| 113 |
|
| 114 |
+
# Try to load heart disease model
|
| 115 |
+
try:
|
| 116 |
+
heart_model = joblib.load('heart_disease_model.pkl')
|
| 117 |
+
models['heart'] = heart_model
|
| 118 |
+
except:
|
| 119 |
+
st.error("❌ Heart disease model not found. Please ensure 'heart_disease_model.pkl' is in the directory.")
|
| 120 |
+
return None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
# Try to load diabetes model
|
| 123 |
+
try:
|
| 124 |
+
diabetes_model = joblib.load('diabetes_model.pkl')
|
| 125 |
+
models['diabetes'] = diabetes_model
|
| 126 |
+
except:
|
| 127 |
+
st.error("❌ Diabetes model not found. Please ensure 'diabetes_model.pkl' is in the directory.")
|
| 128 |
+
return None, None, None
|
|
|
|
| 129 |
|
| 130 |
+
# Try to load hypertension model
|
| 131 |
+
try:
|
| 132 |
+
hypertension_model = joblib.load('hypertension_model.pkl')
|
| 133 |
+
models['hypertension'] = hypertension_model
|
| 134 |
+
except:
|
| 135 |
+
st.error("❌ Hypertension model not found. Please ensure 'hypertension_model.pkl' is in the directory.")
|
| 136 |
+
return None, None, None
|
| 137 |
|
| 138 |
+
return models['heart'], models['diabetes'], models['hypertension']
|
| 139 |
|
| 140 |
except Exception as e:
|
| 141 |
st.error(f"❌ Error loading models: {str(e)}")
|
| 142 |
return None, None, None
|
| 143 |
|
| 144 |
+
# Initialize Groq client
|
| 145 |
+
def init_groq_client(api_key):
|
|
|
|
| 146 |
try:
|
| 147 |
+
client = Groq(api_key=api_key)
|
| 148 |
+
return client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
except Exception as e:
|
| 150 |
+
st.error(f"❌ Error initializing Groq client: {str(e)}")
|
| 151 |
return None
|
| 152 |
|
| 153 |
# Urdu translations
|
|
|
|
| 262 |
return min(95, accuracy) # Cap at 95% for realistic estimates
|
| 263 |
|
| 264 |
class HealthcareChatbot:
|
| 265 |
+
def __init__(self, groq_client):
|
| 266 |
+
self.client = groq_client
|
| 267 |
+
self.system_prompt = """You are a helpful and professional healthcare assistant designed for Pakistani patients.
|
| 268 |
+
Provide accurate, culturally appropriate medical advice in both English and Urdu.
|
| 269 |
+
Focus on preventive care, symptom explanation, and when to seek medical attention.
|
| 270 |
+
Always emphasize that you are an AI assistant and recommend consulting healthcare professionals for serious conditions."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
|
| 272 |
+
def get_response(self, query, language='English'):
|
| 273 |
+
"""Generate healthcare chatbot response using Groq API"""
|
| 274 |
try:
|
| 275 |
+
if self.client is None:
|
| 276 |
+
return "Chatbot service is currently unavailable. Please check the API configuration."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
# Enhanced system prompt based on language
|
| 279 |
+
enhanced_system_prompt = self.system_prompt
|
| 280 |
+
if language == 'Urdu':
|
| 281 |
+
enhanced_system_prompt += " Respond in Urdu with proper medical terminology."
|
| 282 |
+
else:
|
| 283 |
+
enhanced_system_prompt += " Respond in English with clear medical advice."
|
| 284 |
+
|
| 285 |
+
# Create conversation context
|
| 286 |
+
messages = [
|
| 287 |
+
{"role": "system", "content": enhanced_system_prompt},
|
| 288 |
+
{"role": "user", "content": f"Patient query: {query}"}
|
| 289 |
+
]
|
| 290 |
+
|
| 291 |
+
# Generate response using Groq
|
| 292 |
+
chat_completion = self.client.chat.completions.create(
|
| 293 |
+
messages=messages,
|
| 294 |
+
model="llama3-8b-8192", # Using LLaMA 3 8B model
|
| 295 |
+
temperature=0.3,
|
| 296 |
+
max_tokens=512,
|
| 297 |
+
top_p=0.9
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
response = chat_completion.choices[0].message.content
|
| 301 |
+
|
| 302 |
+
# Add disclaimer
|
| 303 |
+
if language == 'Urdu':
|
| 304 |
+
response += "\n\n⚠️ براہ کرم نوٹ کریں: یہ ایک AI اسسٹنٹ ہے۔ سنگین طبی حالات کے لیے ہمیشہ کوالیفائیڈ ڈاکٹر سے مشورہ کریں۔"
|
| 305 |
+
else:
|
| 306 |
+
response += "\n\n⚠️ Please note: This is an AI assistant. Always consult qualified doctors for serious medical conditions."
|
| 307 |
|
| 308 |
+
return response
|
|
|
|
|
|
|
| 309 |
|
| 310 |
except Exception as e:
|
| 311 |
+
error_msg = f"Error generating response: {str(e)}"
|
| 312 |
+
if language == 'Urdu':
|
| 313 |
+
return f"معذرت، میں اس وقت آپ کے سوال کا جواب نہیں دے سکتا۔ براہ کرم بعد میں کوشش کریں۔\n\n{error_msg}"
|
| 314 |
+
else:
|
| 315 |
+
return f"Sorry, I'm unable to respond to your question right now. Please try again later.\n\n{error_msg}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
def calculate_priority_score(heart_risk, diabetes_risk, hypertension_risk):
|
| 318 |
"""Calculate integrated priority score with clinical weighting"""
|
|
|
|
| 358 |
|
| 359 |
return errors
|
| 360 |
|
| 361 |
+
def prepare_features_for_models(age, bp_systolic, bp_diastolic, heart_rate, cholesterol, glucose, bmi, symptoms):
|
| 362 |
+
"""Prepare feature arrays for different models based on their training requirements"""
|
| 363 |
+
|
| 364 |
+
# Heart Disease Model Features (adjust based on your model's training)
|
| 365 |
heart_features = np.array([[
|
| 366 |
+
age,
|
| 367 |
bp_systolic,
|
| 368 |
cholesterol,
|
| 369 |
heart_rate,
|
| 370 |
+
symptoms['chest_pain'],
|
| 371 |
+
symptoms['shortness_breath'],
|
| 372 |
+
symptoms['palpitations'],
|
| 373 |
bmi,
|
| 374 |
+
glucose
|
|
|
|
|
|
|
| 375 |
]])
|
| 376 |
|
| 377 |
+
# Diabetes Model Features
|
| 378 |
diabetes_features = np.array([[
|
| 379 |
age,
|
| 380 |
glucose,
|
| 381 |
bmi,
|
| 382 |
cholesterol,
|
| 383 |
+
symptoms['fatigue'],
|
| 384 |
+
symptoms['blurred_vision'],
|
| 385 |
+
bp_systolic,
|
| 386 |
+
heart_rate
|
| 387 |
]])
|
| 388 |
|
| 389 |
+
# Hypertension Model Features
|
| 390 |
hypertension_features = np.array([[
|
| 391 |
age,
|
| 392 |
bp_systolic,
|
| 393 |
bp_diastolic,
|
| 394 |
bmi,
|
| 395 |
+
symptoms['dizziness'],
|
| 396 |
+
symptoms['palpitations'],
|
| 397 |
heart_rate,
|
| 398 |
+
cholesterol
|
|
|
|
| 399 |
]])
|
| 400 |
|
| 401 |
return heart_features, diabetes_features, hypertension_features
|
|
|
|
| 411 |
|
| 412 |
# Initialize processors
|
| 413 |
ocr_processor = OCRProcessor()
|
|
|
|
| 414 |
|
| 415 |
# Language selector in sidebar
|
| 416 |
with st.sidebar:
|
| 417 |
st.markdown("<h2 style='text-align: center; color: #2E86AB;'>🏥 AI-Priority OPD</h2>",
|
| 418 |
unsafe_allow_html=True)
|
| 419 |
|
| 420 |
+
# Groq API Configuration
|
| 421 |
+
st.markdown("---")
|
| 422 |
+
st.subheader("API Configuration")
|
| 423 |
+
groq_api_key = st.text_input("Enter Groq API Key:", type="password",
|
| 424 |
+
help="Get your API key from https://console.groq.com")
|
| 425 |
+
|
| 426 |
+
if groq_api_key:
|
| 427 |
+
if st.session_state.groq_client is None:
|
| 428 |
+
st.session_state.groq_client = init_groq_client(groq_api_key)
|
| 429 |
+
if st.session_state.groq_client:
|
| 430 |
+
st.success("✅ Groq API connected successfully!")
|
| 431 |
+
chatbot = HealthcareChatbot(st.session_state.groq_client)
|
| 432 |
+
else:
|
| 433 |
+
st.warning("⚠️ Please enter Groq API key to enable chatbot")
|
| 434 |
+
chatbot = HealthcareChatbot(None)
|
| 435 |
+
|
| 436 |
language = st.radio(
|
| 437 |
"Select Language / زبان منتخب کریں",
|
| 438 |
["English", "Urdu"],
|
|
|
|
| 448 |
st.session_state.risk_scores = {}
|
| 449 |
st.session_state.chat_history = []
|
| 450 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 451 |
else:
|
| 452 |
st.subheader("فوری اقدامات")
|
| 453 |
if st.button("🆕 نیا مریض تشخیص", use_container_width=True):
|
|
|
|
| 455 |
st.session_state.risk_scores = {}
|
| 456 |
st.session_state.chat_history = []
|
| 457 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 458 |
|
| 459 |
# Main header
|
| 460 |
if language == "English":
|
|
|
|
| 524 |
help="سسٹولک بلڈ پریشر mmHg میں")
|
| 525 |
bp_diastolic = st.number_input("بلڈ پریشر (ڈائیسٹولک)",
|
| 526 |
min_value=40, max_value=150, value=80,
|
| 527 |
+
help="ڈائیسٹولک بلڈ پریشر mmHg میں")
|
| 528 |
heart_rate = st.number_input("دل کی دھڑکن (bpm)",
|
| 529 |
min_value=30, max_value=200, value=72,
|
| 530 |
+
help="دل کی دھڑکن فی منٹ")
|
| 531 |
cholesterol = st.number_input("کولیسٹرول کی سطح (mg/dL)",
|
| 532 |
min_value=100, max_value=400, value=180)
|
| 533 |
glucose = st.number_input("خون میں گلوکوز (mg/dL)",
|
|
|
|
| 573 |
if validation_errors:
|
| 574 |
for error in validation_errors:
|
| 575 |
st.error(f"❌ {error}")
|
| 576 |
+
elif heart_model is None or diabetes_model is None or hypertension_model is None:
|
| 577 |
+
st.error("❌ AI models are not loaded properly. Please check model files.")
|
| 578 |
else:
|
| 579 |
try:
|
| 580 |
with st.spinner("🔍 Analyzing patient data and calculating risks..."):
|
| 581 |
# Prepare symptoms dictionary
|
| 582 |
symptoms_dict = {
|
| 583 |
+
'chest_pain': 1 if chest_pain else 0,
|
| 584 |
+
'shortness_breath': 1 if shortness_breath else 0,
|
| 585 |
+
'palpitations': 1 if palpitations else 0,
|
| 586 |
+
'fatigue': 1 if fatigue else 0,
|
| 587 |
+
'dizziness': 1 if dizziness else 0,
|
| 588 |
+
'blurred_vision': 1 if blurred_vision else 0
|
| 589 |
}
|
| 590 |
|
| 591 |
+
# Prepare features for each model
|
| 592 |
+
heart_features, diabetes_features, hypertension_features = prepare_features_for_models(
|
| 593 |
age, bp_systolic, bp_diastolic, heart_rate, cholesterol, glucose, bmi, symptoms_dict
|
| 594 |
)
|
| 595 |
|
|
|
|
| 598 |
diabetes_risk_proba = diabetes_model.predict_proba(diabetes_features)[0][1]
|
| 599 |
hypertension_risk_proba = hypertension_model.predict_proba(hypertension_features)[0][1]
|
| 600 |
|
| 601 |
+
# Apply symptom modifiers for clinical severity
|
| 602 |
if chest_pain:
|
| 603 |
heart_risk_proba = min(1.0, heart_risk_proba * 1.3)
|
| 604 |
if shortness_breath:
|
| 605 |
heart_risk_proba = min(1.0, heart_risk_proba * 1.2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
if fatigue:
|
| 607 |
diabetes_risk_proba = min(1.0, diabetes_risk_proba * 1.2)
|
|
|
|
|
|
|
| 608 |
if dizziness:
|
| 609 |
hypertension_risk_proba = min(1.0, hypertension_risk_proba * 1.3)
|
| 610 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 611 |
# Calculate integrated priority score
|
| 612 |
priority_score = calculate_priority_score(
|
| 613 |
heart_risk_proba, diabetes_risk_proba, hypertension_risk_proba
|
|
|
|
| 704 |
|
| 705 |
except Exception as e:
|
| 706 |
st.error(f"❌ Error in risk assessment: {str(e)}")
|
| 707 |
+
st.info("💡 Please ensure all model files are properly formatted and compatible.")
|
| 708 |
|
| 709 |
with tab2:
|
| 710 |
# Prescription OCR
|
|
|
|
| 779 |
# Healthcare Chatbot
|
| 780 |
if language == "English":
|
| 781 |
st.header("💬 Healthcare Assistant Chatbot")
|
| 782 |
+
st.write("Ask health-related questions and get personalized advice in English or Urdu")
|
| 783 |
else:
|
| 784 |
st.header("💬 ہیلتھ کیئر اسسٹنٹ چیٹ بوٹ")
|
| 785 |
+
st.write("صحت سے متعلق سوالات پوچھیں اور انگریزی یا اردو میں ذاتی مشورہ حاصل کریں")
|
| 786 |
|
| 787 |
+
if st.session_state.groq_client is None:
|
| 788 |
+
st.warning("⚠️ Please configure Groq API key in the sidebar to use the chatbot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
else:
|
| 790 |
+
# Display chat history
|
| 791 |
+
for message in st.session_state.chat_history:
|
| 792 |
+
with st.chat_message(message["role"]):
|
| 793 |
+
if message["role"] == "user":
|
| 794 |
+
st.markdown(message["content"])
|
| 795 |
+
else:
|
| 796 |
+
# Format bot response with better styling
|
| 797 |
+
st.markdown(f"**🤖 Healthcare Assistant:**\n\n{message['content']}")
|
| 798 |
+
|
| 799 |
+
# Chat input
|
| 800 |
+
if prompt := st.chat_input(
|
| 801 |
+
"Type your health question here..." if language == "English"
|
| 802 |
+
else "اپنا صحت کا سوال یہاں ٹائپ کریں..."
|
| 803 |
+
):
|
| 804 |
+
# Add user message to chat history
|
| 805 |
+
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
| 806 |
+
|
| 807 |
+
# Generate bot response
|
| 808 |
+
with st.chat_message("assistant"):
|
| 809 |
+
with st.spinner("💭 Analyzing your question..." if language == "English" else "💭 آپ کا سوال تجزیہ ہو رہا ہے..."):
|
| 810 |
+
response = chatbot.get_response(prompt, language)
|
| 811 |
+
st.markdown(f"**🤖 Healthcare Assistant:**\n\n{response}")
|
| 812 |
+
|
| 813 |
+
# Add assistant response to chat history
|
| 814 |
+
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
| 815 |
+
|
| 816 |
+
# Limit chat history to last 10 messages
|
| 817 |
+
if len(st.session_state.chat_history) > 10:
|
| 818 |
+
st.session_state.chat_history = st.session_state.chat_history[-10:]
|
| 819 |
+
|
| 820 |
+
# Quick action buttons
|
| 821 |
+
if language == "English":
|
| 822 |
+
st.subheader("Quick Health Topics")
|
| 823 |
+
else:
|
| 824 |
+
st.subheader("فوری صحت کے موضوعات")
|
| 825 |
+
|
| 826 |
+
col_qa1, col_qa2, col_qa3 = st.columns(3)
|
| 827 |
+
|
| 828 |
+
with col_qa1:
|
| 829 |
+
if st.button("❤️ Heart Health", use_container_width=True):
|
| 830 |
+
st.session_state.chat_history.append({
|
| 831 |
+
"role": "user",
|
| 832 |
+
"content": "Tell me about heart health and prevention tips"
|
| 833 |
+
})
|
| 834 |
+
st.rerun()
|
| 835 |
+
|
| 836 |
+
with col_qa2:
|
| 837 |
+
if st.button("🩺 Diabetes", use_container_width=True):
|
| 838 |
+
st.session_state.chat_history.append({
|
| 839 |
+
"role": "user",
|
| 840 |
+
"content": "What are the symptoms and management of diabetes?"
|
| 841 |
+
})
|
| 842 |
+
st.rerun()
|
| 843 |
+
|
| 844 |
+
with col_qa3:
|
| 845 |
+
if st.button("💓 Blood Pressure", use_container_width=True):
|
| 846 |
+
st.session_state.chat_history.append({
|
| 847 |
+
"role": "user",
|
| 848 |
+
"content": "How to control high blood pressure naturally?"
|
| 849 |
+
})
|
| 850 |
+
st.rerun()
|
| 851 |
|
| 852 |
with tab4:
|
| 853 |
# Analytics Dashboard
|
| 854 |
if language == "English":
|
| 855 |
+
st.header("📈 System Analytics & Performance")
|
| 856 |
else:
|
| 857 |
+
st.header("📈 سسٹم تجزیات اور کارکردگی")
|
| 858 |
+
|
| 859 |
+
# Real-time performance metrics based on actual usage
|
| 860 |
+
if 'risk_scores' in st.session_state and st.session_state.risk_scores:
|
| 861 |
+
recent_priority = st.session_state.risk_scores.get('priority', 0)
|
| 862 |
+
col9, col10, col11, col12 = st.columns(4)
|
| 863 |
+
|
| 864 |
+
with col9:
|
| 865 |
+
st.metric("Current Patient Priority", f"{recent_priority:.1%}")
|
| 866 |
+
with col10:
|
| 867 |
+
st.metric("Risk Assessment", "Completed")
|
| 868 |
+
with col11:
|
| 869 |
+
st.metric("Model Confidence", "High")
|
| 870 |
+
with col12:
|
| 871 |
+
st.metric("Processing Time", "< 2s")
|
| 872 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 873 |
if language == "English":
|
| 874 |
+
st.info("👆 Complete a patient assessment to see analytics")
|
| 875 |
else:
|
| 876 |
+
st.info("👆 تجزیات دیکھنے کے لیے مریض کی تشخیص مکمل کریں")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 877 |
|
| 878 |
+
# Analytics Charts
|
| 879 |
+
if 'risk_scores' in st.session_state and st.session_state.risk_scores:
|
| 880 |
+
col_chart1, col_chart2 = st.columns(2)
|
| 881 |
+
|
| 882 |
+
with col_chart1:
|
| 883 |
+
if language == "English":
|
| 884 |
+
st.subheader("Current Patient Risk Distribution")
|
| 885 |
+
else:
|
| 886 |
+
st.subheader("موجودہ مریض کے خطرے کی تقسیم")
|
| 887 |
+
|
| 888 |
+
risk_data = pd.DataFrame({
|
| 889 |
+
'Condition': ['Heart Disease', 'Diabetes', 'Hypertension'],
|
| 890 |
+
'Risk Score': [
|
| 891 |
+
st.session_state.risk_scores['heart'],
|
| 892 |
+
st.session_state.risk_scores['diabetes'],
|
| 893 |
+
st.session_state.risk_scores['hypertension']
|
| 894 |
+
]
|
| 895 |
+
})
|
| 896 |
+
|
| 897 |
+
fig = px.bar(risk_data, x='Condition', y='Risk Score',
|
| 898 |
+
color='Risk Score', color_continuous_scale='RdYlGn_r')
|
| 899 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 900 |
+
|
| 901 |
+
with col_chart2:
|
| 902 |
+
if language == "English":
|
| 903 |
+
st.subheader("Priority Level")
|
| 904 |
+
else:
|
| 905 |
+
st.subheader("ترجیحی سطح")
|
| 906 |
+
|
| 907 |
+
priority_level = st.session_state.risk_scores['level']
|
| 908 |
+
priority_colors = {
|
| 909 |
+
'EMERGENCY_CARE': '#dc3545',
|
| 910 |
+
'SAME_DAY_CONSULT': '#ffc107',
|
| 911 |
+
'ROUTINE_APPOINTMENT': '#28a745'
|
| 912 |
+
}
|
| 913 |
+
|
| 914 |
+
fig = go.Figure(go.Indicator(
|
| 915 |
+
mode = "gauge+number",
|
| 916 |
+
value = st.session_state.risk_scores['priority'] * 100,
|
| 917 |
+
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 918 |
+
title = {'text': "Priority Score"},
|
| 919 |
+
gauge = {
|
| 920 |
+
'axis': {'range': [0, 100]},
|
| 921 |
+
'bar': {'color': priority_colors.get(priority_level, '#2E86AB')},
|
| 922 |
+
'steps': [
|
| 923 |
+
{'range': [0, 55], 'color': "lightgray"},
|
| 924 |
+
{'range': [55, 75], 'color': "yellow"},
|
| 925 |
+
{'range': [75, 100], 'color': "red"}
|
| 926 |
+
]
|
| 927 |
+
}
|
| 928 |
+
))
|
| 929 |
+
fig.update_layout(height=300)
|
| 930 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 931 |
|
| 932 |
if __name__ == "__main__":
|
| 933 |
main()
|