Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| import torch | |
| from PIL import Image | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import InterpolationMode | |
| from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD | |
| import hiera | |
| df=pd.read_csv('Imagenet.txt',usecols=[0],header=None) | |
| model = hiera.hiera_base_224(pretrained=True, checkpoint="mae_in1k_ft_in1k") | |
| input_size = 224 | |
| transform_list = [ | |
| transforms.Resize(int((256 / 224) * input_size), interpolation=InterpolationMode.BICUBIC), | |
| transforms.CenterCrop(input_size) | |
| ] | |
| transform_norm = transforms.Compose(transform_list + [ | |
| transforms.ToTensor(), | |
| transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD), | |
| ]) | |
| def recognize(img): | |
| img1=img.resize((224,224)) | |
| img_norm = transform_norm(img1) | |
| output = model(img_norm[None,]) | |
| out=output.argmax(dim=-1).item() | |
| out1=(df.iloc[out,0]) | |
| return out1 | |
| demo = gr.Interface(fn=recognize, inputs='pil',outputs='text',examples= [['Banana.jpg']]) | |
| demo.launch() |