Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,13 @@
|
|
| 1 |
# let's import the libraries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from email import header
|
| 3 |
import streamlit as st
|
| 4 |
import pandas as pd
|
|
@@ -11,14 +20,6 @@ import io
|
|
| 11 |
import netrc
|
| 12 |
from tqdm import tqdm
|
| 13 |
tqdm.pandas()
|
| 14 |
-
import torch
|
| 15 |
-
import os
|
| 16 |
-
import sys
|
| 17 |
-
import time
|
| 18 |
-
import sentence_transformers
|
| 19 |
-
from sentence_transformers import SentenceTransformer
|
| 20 |
-
from sentence_transformers import CrossEncoder
|
| 21 |
-
from sentence_transformers import util
|
| 22 |
|
| 23 |
# let's load the english stsb dataset
|
| 24 |
stsb_dataset = load_dataset('stsb_multi_mt', 'en')
|
|
@@ -26,7 +27,10 @@ stsb_train = pd.DataFrame(stsb_dataset['train'])
|
|
| 26 |
stsb_test = pd.DataFrame(stsb_dataset['test'])
|
| 27 |
|
| 28 |
# let's create helper functions
|
| 29 |
-
nlp =
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
def text_processing(sentence):
|
| 32 |
sentence = [token.lemma_.lower()
|
|
@@ -34,10 +38,12 @@ def text_processing(sentence):
|
|
| 34 |
if token.is_alpha and not token.is_stop]
|
| 35 |
return sentence
|
| 36 |
|
|
|
|
| 37 |
def cos_sim(sentence1_emb, sentence2_emb):
|
| 38 |
cos_sim = cosine_similarity(sentence1_emb, sentence2_emb)
|
| 39 |
return np.diag(cos_sim)
|
| 40 |
|
|
|
|
| 41 |
# let's read the csv file
|
| 42 |
data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis=1)
|
| 43 |
|
|
@@ -52,10 +58,10 @@ data['sentence1'] = data['sentence1'].astype('str')
|
|
| 52 |
XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base")
|
| 53 |
sentence_pairs = []
|
| 54 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
| 55 |
-
|
| 56 |
|
| 57 |
data['SBERT CrossEncoder_Score'] = XpathFinder.predict(
|
| 58 |
-
|
| 59 |
|
| 60 |
loaded_model = XpathFinder
|
| 61 |
|
|
@@ -65,18 +71,19 @@ mod_container = st.container()
|
|
| 65 |
|
| 66 |
# let's create the header
|
| 67 |
with header_container:
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
# let's create the model container
|
| 72 |
with mod_container:
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
| 1 |
# let's import the libraries
|
| 2 |
+
from sentence_transformers import util
|
| 3 |
+
from sentence_transformers import CrossEncoder
|
| 4 |
+
from sentence_transformers import SentenceTransformer
|
| 5 |
+
import sentence_transformers
|
| 6 |
+
import time
|
| 7 |
+
import sys
|
| 8 |
+
import os
|
| 9 |
+
import torch
|
| 10 |
+
import en_core_web_sm
|
| 11 |
from email import header
|
| 12 |
import streamlit as st
|
| 13 |
import pandas as pd
|
|
|
|
| 20 |
import netrc
|
| 21 |
from tqdm import tqdm
|
| 22 |
tqdm.pandas()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# let's load the english stsb dataset
|
| 25 |
stsb_dataset = load_dataset('stsb_multi_mt', 'en')
|
|
|
|
| 27 |
stsb_test = pd.DataFrame(stsb_dataset['test'])
|
| 28 |
|
| 29 |
# let's create helper functions
|
| 30 |
+
nlp = en_core_web_sm.load()
|
| 31 |
+
|
| 32 |
+
#nlp = spacy.load("en_core_web_sm")
|
| 33 |
+
|
| 34 |
|
| 35 |
def text_processing(sentence):
|
| 36 |
sentence = [token.lemma_.lower()
|
|
|
|
| 38 |
if token.is_alpha and not token.is_stop]
|
| 39 |
return sentence
|
| 40 |
|
| 41 |
+
|
| 42 |
def cos_sim(sentence1_emb, sentence2_emb):
|
| 43 |
cos_sim = cosine_similarity(sentence1_emb, sentence2_emb)
|
| 44 |
return np.diag(cos_sim)
|
| 45 |
|
| 46 |
+
|
| 47 |
# let's read the csv file
|
| 48 |
data = (pd.read_csv("SBERT_data.csv")).drop(['Unnamed: 0'], axis=1)
|
| 49 |
|
|
|
|
| 58 |
XpathFinder = CrossEncoder("cross-encoder/stsb-roberta-base")
|
| 59 |
sentence_pairs = []
|
| 60 |
for sentence1, sentence2 in zip(data['sentence1'], data['sentence2']):
|
| 61 |
+
sentence_pairs.append([sentence1, sentence2])
|
| 62 |
|
| 63 |
data['SBERT CrossEncoder_Score'] = XpathFinder.predict(
|
| 64 |
+
sentence_pairs, show_progress_bar=True)
|
| 65 |
|
| 66 |
loaded_model = XpathFinder
|
| 67 |
|
|
|
|
| 71 |
|
| 72 |
# let's create the header
|
| 73 |
with header_container:
|
| 74 |
+
st.title("SBERT CrossEncoder")
|
| 75 |
+
st.markdown("This is a demo of the SBERT CrossEncoder model")
|
| 76 |
|
| 77 |
# let's create the model container
|
| 78 |
with mod_container:
|
| 79 |
+
# let's get input from the user
|
| 80 |
+
prompt = st.text_input("Enter a description below...")
|
| 81 |
+
|
| 82 |
+
if prompt:
|
| 83 |
+
simscore = loaded_model.predict([prompt])
|
| 84 |
+
# sort the values
|
| 85 |
+
data['SBERT CrossEncoder_Score'] = simscore
|
| 86 |
+
most_acc = data.head(5)
|
| 87 |
+
st.write(most_acc)
|
| 88 |
+
st.write("The most accurate sentence is: ",
|
| 89 |
+
most_acc['sentence2'].iloc[0])
|