Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from diffusers import DiffusionPipeline
|
| 3 |
+
|
| 4 |
+
pipeline = DiffusionPipeline.from_pretrained("anton-l/ddpm-butterflies-128").to("cuda")
|
| 5 |
+
|
| 6 |
+
def diffusion():
|
| 7 |
+
images = []
|
| 8 |
+
for i in range(3):
|
| 9 |
+
image = pipeline(num_inference_steps=25).images[0]
|
| 10 |
+
images.append(image)
|
| 11 |
+
return images
|
| 12 |
+
|
| 13 |
+
demo = gr.Interface(
|
| 14 |
+
fn=diffusion,
|
| 15 |
+
inputs=None,
|
| 16 |
+
outputs=gr.Gallery(label="generated image", columns=3),
|
| 17 |
+
title="Unconditional image generation",
|
| 18 |
+
description="An unconditional diffusion model trained on a dataset of butterfly images."
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
demo.launch(debug=True)
|