Spaces:
Sleeping
Sleeping
app: add initial version
Browse files
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
title = """
|
| 5 |
+
# hmLeaderboard
|
| 6 |
+
|
| 7 |
+

|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
description = """
|
| 11 |
+
## Space for tracking and ranking models on Historic NER Datasets.
|
| 12 |
+
|
| 13 |
+
At the moment the following models are supported:
|
| 14 |
+
|
| 15 |
+
* hmBERT: [Historical Multilingual Language Models for Named Entity Recognition](https://huggingface.co/hmbert).
|
| 16 |
+
* hmTEAMS: [Historic Multilingual TEAMS Models](https://huggingface.co/hmteams).
|
| 17 |
+
"""
|
| 18 |
+
footer = "Made from Bavarian Oberland with ❤️ and 🥨."
|
| 19 |
+
|
| 20 |
+
model_selection_file_names = {
|
| 21 |
+
"Best Configuration": "best_model_configurations.csv",
|
| 22 |
+
"Best Model": "best_models.csv"
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
df_init = pd.read_csv(model_selection_file_names["Best Configuration"])
|
| 26 |
+
dataset_names = df_init.columns.values[1:].tolist()
|
| 27 |
+
languages = list(set([dataset_name.split(" ")[0] for dataset_name in dataset_names]))
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def perform_evaluation_for_datasets(model_selection, selected_datasets):
|
| 31 |
+
df = pd.read_csv(model_selection_file_names.get(model_selection))
|
| 32 |
+
|
| 33 |
+
selected_indices = []
|
| 34 |
+
|
| 35 |
+
for selected_dataset in selected_datasets:
|
| 36 |
+
selected_indices.append(dataset_names.index(selected_dataset) + 1)
|
| 37 |
+
|
| 38 |
+
mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2)
|
| 39 |
+
|
| 40 |
+
# Include column with column name
|
| 41 |
+
result_df = df.iloc[:, [0] + selected_indices]
|
| 42 |
+
result_df["Average"] = mean_column
|
| 43 |
+
|
| 44 |
+
return result_df
|
| 45 |
+
|
| 46 |
+
def perform_evaluation_for_languages(model_selection, selected_languages):
|
| 47 |
+
df = pd.read_csv(model_selection_file_names.get(model_selection))
|
| 48 |
+
|
| 49 |
+
selected_indices = []
|
| 50 |
+
|
| 51 |
+
for selected_language in selected_languages:
|
| 52 |
+
selected_language = selected_language.lower()
|
| 53 |
+
found_indices = [i for i, column_name in enumerate(df.columns) if selected_language in column_name.lower()]
|
| 54 |
+
|
| 55 |
+
for found_index in found_indices:
|
| 56 |
+
selected_indices.append(found_index)
|
| 57 |
+
|
| 58 |
+
mean_column = df.iloc[:, selected_indices].mean(axis=1).round(2)
|
| 59 |
+
|
| 60 |
+
# Include column with column name
|
| 61 |
+
result_df = df.iloc[:, [0] + selected_indices]
|
| 62 |
+
result_df["Average"] = mean_column
|
| 63 |
+
|
| 64 |
+
return result_df
|
| 65 |
+
|
| 66 |
+
with gr.Blocks() as demo:
|
| 67 |
+
gr.Markdown(title)
|
| 68 |
+
gr.Markdown(description)
|
| 69 |
+
|
| 70 |
+
with gr.Tab("Overview"):
|
| 71 |
+
gr.Markdown("### Best Configuration\nThe best hyper-parameter configuration for each model is used and average F1-score over runs with different seeds is reported here:")
|
| 72 |
+
|
| 73 |
+
df_result = perform_evaluation_for_datasets("Best Configuration", dataset_names)
|
| 74 |
+
|
| 75 |
+
gr.Dataframe(value=df_result)
|
| 76 |
+
|
| 77 |
+
gr.Markdown("### Best Model\nThe best hyper-parameter configuration for each model is used and the model with highest F1-score is used and its performance is reported here:")
|
| 78 |
+
|
| 79 |
+
df_result = perform_evaluation_for_datasets("Best Model", dataset_names)
|
| 80 |
+
|
| 81 |
+
gr.Dataframe(value=df_result)
|
| 82 |
+
|
| 83 |
+
with gr.Tab("Filtering"):
|
| 84 |
+
|
| 85 |
+
gr.Markdown("### Filtering\nSwiss-knife filtering for single datasets and languages is possible.")
|
| 86 |
+
|
| 87 |
+
model_selection = gr.Radio(choices=["Best Configuration", "Best Model"],
|
| 88 |
+
label="Model Selection",
|
| 89 |
+
info="Defines if best configuration or best model should be used for evaluation. When 'Best Configuration' is used, the best hyper-parameter configuration is used and then averaged F1-score over all runs is calculated. When 'Best Model' is chosen, the best hyper-parameter configuration and model with highest F1-score on development dataset is used (best model).",
|
| 90 |
+
value="Best Configuration")
|
| 91 |
+
|
| 92 |
+
with gr.Tab("Dataset Selection"):
|
| 93 |
+
datasets_selection = gr.CheckboxGroup(
|
| 94 |
+
dataset_names, label="Datasets", info="Select datasets for evaluation"
|
| 95 |
+
)
|
| 96 |
+
output_df = gr.Dataframe()
|
| 97 |
+
|
| 98 |
+
evaluation_button = gr.Button("Evaluate")
|
| 99 |
+
evaluation_button.click(fn=perform_evaluation_for_datasets, inputs=[model_selection, datasets_selection], outputs=output_df)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
with gr.Tab("Language Selection"):
|
| 103 |
+
language_selection = gr.CheckboxGroup(
|
| 104 |
+
languages, label="Languages", info="Select languages for evaluation"
|
| 105 |
+
)
|
| 106 |
+
output_df = gr.Dataframe()
|
| 107 |
+
|
| 108 |
+
evaluation_button = gr.Button("Evaluate")
|
| 109 |
+
evaluation_button.click(fn=perform_evaluation_for_languages, inputs=[model_selection, language_selection], outputs=output_df)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
gr.Markdown(footer)
|
| 114 |
+
|
| 115 |
+
demo.launch()
|