Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| """make variations of input image""" | |
| import argparse, os | |
| import PIL | |
| import torch | |
| import numpy as np | |
| from omegaconf import OmegaConf | |
| from PIL import Image | |
| from tqdm import tqdm, trange | |
| from itertools import islice | |
| from einops import rearrange, repeat | |
| from torchvision.utils import make_grid | |
| from torch import autocast | |
| from contextlib import nullcontext | |
| from pytorch_lightning import seed_everything | |
| from imwatermark import WatermarkEncoder | |
| from scripts.txt2img import put_watermark | |
| from ldm.util import instantiate_from_config | |
| from ldm.models.diffusion.ddim import DDIMSampler | |
| def chunk(it, size): | |
| it = iter(it) | |
| return iter(lambda: tuple(islice(it, size)), ()) | |
| def load_model_from_config(config, ckpt, verbose=False): | |
| print(f"Loading model from {ckpt}") | |
| pl_sd = torch.load(ckpt, map_location="cpu") | |
| if "global_step" in pl_sd: | |
| print(f"Global Step: {pl_sd['global_step']}") | |
| sd = pl_sd["state_dict"] | |
| model = instantiate_from_config(config.model) | |
| m, u = model.load_state_dict(sd, strict=False) | |
| if len(m) > 0 and verbose: | |
| print("missing keys:") | |
| print(m) | |
| if len(u) > 0 and verbose: | |
| print("unexpected keys:") | |
| print(u) | |
| model.cuda() | |
| model.eval() | |
| return model | |
| def load_img(path): | |
| image = Image.open(path).convert("RGB") | |
| w, h = image.size | |
| print(f"loaded input image of size ({w}, {h}) from {path}") | |
| w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 | |
| image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return 2. * image - 1. | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--prompt", | |
| type=str, | |
| nargs="?", | |
| default="a painting of a virus monster playing guitar", | |
| help="the prompt to render" | |
| ) | |
| parser.add_argument( | |
| "--init-img", | |
| type=str, | |
| nargs="?", | |
| help="path to the input image" | |
| ) | |
| parser.add_argument( | |
| "--outdir", | |
| type=str, | |
| nargs="?", | |
| help="dir to write results to", | |
| default="outputs/img2img-samples" | |
| ) | |
| parser.add_argument( | |
| "--ddim_steps", | |
| type=int, | |
| default=50, | |
| help="number of ddim sampling steps", | |
| ) | |
| parser.add_argument( | |
| "--fixed_code", | |
| action='store_true', | |
| help="if enabled, uses the same starting code across all samples ", | |
| ) | |
| parser.add_argument( | |
| "--ddim_eta", | |
| type=float, | |
| default=0.0, | |
| help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
| ) | |
| parser.add_argument( | |
| "--n_iter", | |
| type=int, | |
| default=1, | |
| help="sample this often", | |
| ) | |
| parser.add_argument( | |
| "--C", | |
| type=int, | |
| default=4, | |
| help="latent channels", | |
| ) | |
| parser.add_argument( | |
| "--f", | |
| type=int, | |
| default=8, | |
| help="downsampling factor, most often 8 or 16", | |
| ) | |
| parser.add_argument( | |
| "--n_samples", | |
| type=int, | |
| default=2, | |
| help="how many samples to produce for each given prompt. A.k.a batch size", | |
| ) | |
| parser.add_argument( | |
| "--n_rows", | |
| type=int, | |
| default=0, | |
| help="rows in the grid (default: n_samples)", | |
| ) | |
| parser.add_argument( | |
| "--scale", | |
| type=float, | |
| default=9.0, | |
| help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
| ) | |
| parser.add_argument( | |
| "--strength", | |
| type=float, | |
| default=0.8, | |
| help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image", | |
| ) | |
| parser.add_argument( | |
| "--from-file", | |
| type=str, | |
| help="if specified, load prompts from this file", | |
| ) | |
| parser.add_argument( | |
| "--config", | |
| type=str, | |
| default="configs/stable-diffusion/v2-inference.yaml", | |
| help="path to config which constructs model", | |
| ) | |
| parser.add_argument( | |
| "--ckpt", | |
| type=str, | |
| help="path to checkpoint of model", | |
| ) | |
| parser.add_argument( | |
| "--seed", | |
| type=int, | |
| default=42, | |
| help="the seed (for reproducible sampling)", | |
| ) | |
| parser.add_argument( | |
| "--precision", | |
| type=str, | |
| help="evaluate at this precision", | |
| choices=["full", "autocast"], | |
| default="autocast" | |
| ) | |
| opt = parser.parse_args() | |
| seed_everything(opt.seed) | |
| config = OmegaConf.load(f"{opt.config}") | |
| model = load_model_from_config(config, f"{opt.ckpt}") | |
| device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
| model = model.to(device) | |
| sampler = DDIMSampler(model) | |
| os.makedirs(opt.outdir, exist_ok=True) | |
| outpath = opt.outdir | |
| print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
| wm = "SDV2" | |
| wm_encoder = WatermarkEncoder() | |
| wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
| batch_size = opt.n_samples | |
| n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
| if not opt.from_file: | |
| prompt = opt.prompt | |
| assert prompt is not None | |
| data = [batch_size * [prompt]] | |
| else: | |
| print(f"reading prompts from {opt.from_file}") | |
| with open(opt.from_file, "r") as f: | |
| data = f.read().splitlines() | |
| data = list(chunk(data, batch_size)) | |
| sample_path = os.path.join(outpath, "samples") | |
| os.makedirs(sample_path, exist_ok=True) | |
| base_count = len(os.listdir(sample_path)) | |
| grid_count = len(os.listdir(outpath)) - 1 | |
| assert os.path.isfile(opt.init_img) | |
| init_image = load_img(opt.init_img).to(device) | |
| init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) | |
| init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space | |
| sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False) | |
| assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]' | |
| t_enc = int(opt.strength * opt.ddim_steps) | |
| print(f"target t_enc is {t_enc} steps") | |
| precision_scope = autocast if opt.precision == "autocast" else nullcontext | |
| with torch.no_grad(): | |
| with precision_scope("cuda"): | |
| with model.ema_scope(): | |
| all_samples = list() | |
| for n in trange(opt.n_iter, desc="Sampling"): | |
| for prompts in tqdm(data, desc="data"): | |
| uc = None | |
| if opt.scale != 1.0: | |
| uc = model.get_learned_conditioning(batch_size * [""]) | |
| if isinstance(prompts, tuple): | |
| prompts = list(prompts) | |
| c = model.get_learned_conditioning(prompts) | |
| # encode (scaled latent) | |
| z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device)) | |
| # decode it | |
| samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale, | |
| unconditional_conditioning=uc, ) | |
| x_samples = model.decode_first_stage(samples) | |
| x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) | |
| for x_sample in x_samples: | |
| x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
| img = Image.fromarray(x_sample.astype(np.uint8)) | |
| img = put_watermark(img, wm_encoder) | |
| img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
| base_count += 1 | |
| all_samples.append(x_samples) | |
| # additionally, save as grid | |
| grid = torch.stack(all_samples, 0) | |
| grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
| grid = make_grid(grid, nrow=n_rows) | |
| # to image | |
| grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
| grid = Image.fromarray(grid.astype(np.uint8)) | |
| grid = put_watermark(grid, wm_encoder) | |
| grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
| grid_count += 1 | |
| print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.") | |
| if __name__ == "__main__": | |
| main() | |