Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,43 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
|
| 5 |
import spaces
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
if torch.cuda.is_available():
|
| 13 |
torch_dtype = torch.bfloat16
|
| 14 |
else:
|
| 15 |
torch_dtype = torch.float32
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
|
@@ -82,8 +104,9 @@ with gr.Blocks(css=css) as demo:
|
|
| 82 |
negative_prompt = gr.Text(
|
| 83 |
label="Negative prompt",
|
| 84 |
max_lines=1,
|
| 85 |
-
placeholder="Enter
|
| 86 |
-
|
|
|
|
| 87 |
)
|
| 88 |
|
| 89 |
seed = gr.Slider(
|
|
@@ -148,4 +171,4 @@ with gr.Blocks(css=css) as demo:
|
|
| 148 |
)
|
| 149 |
|
| 150 |
if __name__ == "__main__":
|
| 151 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
import os
|
| 5 |
|
| 6 |
import spaces
|
| 7 |
from diffusers import DiffusionPipeline
|
| 8 |
import torch
|
| 9 |
+
from huggingface_hub import HfFolder
|
| 10 |
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
| 13 |
|
| 14 |
+
def get_hf_token():
|
| 15 |
+
token = os.getenv("HF_TOKEN") # First check environment variable
|
| 16 |
+
if not token:
|
| 17 |
+
token = HfFolder.get_token() # Then check .huggingface/token
|
| 18 |
+
return token
|
| 19 |
+
|
| 20 |
if torch.cuda.is_available():
|
| 21 |
torch_dtype = torch.bfloat16
|
| 22 |
else:
|
| 23 |
torch_dtype = torch.float32
|
| 24 |
|
| 25 |
+
# Initialize pipeline with token
|
| 26 |
+
token = get_hf_token()
|
| 27 |
+
if token:
|
| 28 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 29 |
+
model_repo_id,
|
| 30 |
+
torch_dtype=torch_dtype,
|
| 31 |
+
use_auth_token=token
|
| 32 |
+
)
|
| 33 |
+
pipe = pipe.to(device)
|
| 34 |
+
else:
|
| 35 |
+
raise ValueError(
|
| 36 |
+
"HF token not found. Please set your Hugging Face token either:\n"
|
| 37 |
+
"1. As an environment variable: export HF_TOKEN='your_token'\n"
|
| 38 |
+
"2. Using the Hugging Face CLI: huggingface-cli login\n"
|
| 39 |
+
"You can get your token from: https://huggingface.co/settings/tokens"
|
| 40 |
+
)
|
| 41 |
|
| 42 |
MAX_SEED = np.iinfo(np.int32).max
|
| 43 |
MAX_IMAGE_SIZE = 1024
|
|
|
|
| 104 |
negative_prompt = gr.Text(
|
| 105 |
label="Negative prompt",
|
| 106 |
max_lines=1,
|
| 107 |
+
placeholder="Enter things you don't want in the image (optional)",
|
| 108 |
+
value="",
|
| 109 |
+
visible=True,
|
| 110 |
)
|
| 111 |
|
| 112 |
seed = gr.Slider(
|
|
|
|
| 171 |
)
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
+
demo.launch()
|