Spaces:
Running
Running
| import os | |
| import torch | |
| from models.core.custom_hooks.shuffle_hooks import ShufflePairedSamplesHook | |
| from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
| from mmcv.runner import (DistSamplerSeedHook, EpochBasedRunner, OptimizerHook, | |
| build_optimizer) | |
| from mmpose.core import DistEvalHook, EvalHook, Fp16OptimizerHook | |
| from mmpose.datasets import build_dataloader | |
| from mmpose.utils import get_root_logger | |
| def train_model(model, | |
| dataset, | |
| val_dataset, | |
| cfg, | |
| distributed=False, | |
| validate=False, | |
| timestamp=None, | |
| meta=None): | |
| """Train model entry function. | |
| Args: | |
| model (nn.Module): The model to be trained. | |
| dataset (Dataset): Train dataset. | |
| cfg (dict): The config dict for training. | |
| distributed (bool): Whether to use distributed training. | |
| Default: False. | |
| validate (bool): Whether to do evaluation. Default: False. | |
| timestamp (str | None): Local time for runner. Default: None. | |
| meta (dict | None): Meta dict to record some important information. | |
| Default: None | |
| """ | |
| logger = get_root_logger(cfg.log_level) | |
| # prepare data loaders | |
| dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset] | |
| dataloader_setting = dict( | |
| samples_per_gpu=cfg.data.get('samples_per_gpu', {}), | |
| workers_per_gpu=cfg.data.get('workers_per_gpu', {}), | |
| # cfg.gpus will be ignored if distributed | |
| num_gpus=len(cfg.gpu_ids), | |
| dist=distributed, | |
| seed=cfg.seed, | |
| pin_memory=False, | |
| ) | |
| dataloader_setting = dict(dataloader_setting, | |
| **cfg.data.get('train_dataloader', {})) | |
| data_loaders = [ | |
| build_dataloader(ds, **dataloader_setting) for ds in dataset | |
| ] | |
| # put model on gpus | |
| if distributed: | |
| find_unused_parameters = cfg.get('find_unused_parameters', | |
| False) # NOTE: True has been modified to False for faster training. | |
| # Sets the `find_unused_parameters` parameter in | |
| # torch.nn.parallel.DistributedDataParallel | |
| model = MMDistributedDataParallel( | |
| model.cuda(), | |
| device_ids=[torch.cuda.current_device()], | |
| broadcast_buffers=False, | |
| find_unused_parameters=find_unused_parameters) | |
| else: | |
| model = MMDataParallel( | |
| model.cuda(cfg.gpu_ids[0]), device_ids=cfg.gpu_ids) | |
| # build runner | |
| optimizer = build_optimizer(model, cfg.optimizer) | |
| runner = EpochBasedRunner( | |
| model, | |
| optimizer=optimizer, | |
| work_dir=cfg.work_dir, | |
| logger=logger, | |
| meta=meta) | |
| # an ugly workaround to make .log and .log.json filenames the same | |
| runner.timestamp = timestamp | |
| # fp16 setting | |
| fp16_cfg = cfg.get('fp16', None) | |
| if fp16_cfg is not None: | |
| optimizer_config = Fp16OptimizerHook( | |
| **cfg.optimizer_config, **fp16_cfg, distributed=distributed) | |
| elif distributed and 'type' not in cfg.optimizer_config: | |
| optimizer_config = OptimizerHook(**cfg.optimizer_config) | |
| else: | |
| optimizer_config = cfg.optimizer_config | |
| # register hooks | |
| runner.register_training_hooks(cfg.lr_config, optimizer_config, | |
| cfg.checkpoint_config, cfg.log_config, | |
| cfg.get('momentum_config', None)) | |
| if distributed: | |
| runner.register_hook(DistSamplerSeedHook()) | |
| shuffle_cfg = cfg.get('shuffle_cfg', None) | |
| if shuffle_cfg is not None: | |
| for data_loader in data_loaders: | |
| runner.register_hook(ShufflePairedSamplesHook(data_loader, **shuffle_cfg)) | |
| # register eval hooks | |
| if validate: | |
| eval_cfg = cfg.get('evaluation', {}) | |
| eval_cfg['res_folder'] = os.path.join(cfg.work_dir, eval_cfg['res_folder']) | |
| dataloader_setting = dict( | |
| # samples_per_gpu=cfg.data.get('samples_per_gpu', {}), | |
| samples_per_gpu=1, | |
| workers_per_gpu=cfg.data.get('workers_per_gpu', {}), | |
| # cfg.gpus will be ignored if distributed | |
| num_gpus=len(cfg.gpu_ids), | |
| dist=distributed, | |
| shuffle=False, | |
| pin_memory=False, | |
| ) | |
| dataloader_setting = dict(dataloader_setting, | |
| **cfg.data.get('val_dataloader', {})) | |
| val_dataloader = build_dataloader(val_dataset, **dataloader_setting) | |
| eval_hook = DistEvalHook if distributed else EvalHook | |
| runner.register_hook(eval_hook(val_dataloader, **eval_cfg)) | |
| if cfg.resume_from: | |
| runner.resume(cfg.resume_from) | |
| elif cfg.load_from: | |
| runner.load_checkpoint(cfg.load_from) | |
| runner.run(data_loaders, cfg.workflow, cfg.total_epochs) | |