Spaces:
Runtime error
Runtime error
Use environement variables with os.environ function
Browse files- app.py +1 -0
- spanish_medica_llm.py +7 -1
app.py
CHANGED
|
@@ -40,6 +40,7 @@ def evaluate_model():
|
|
| 40 |
return(f"Evaluate Model {os.environ.get('HF_LLM_MODEL_ID')} from dataset {os.environ.get('HF_LLM_DATASET_ID')}")
|
| 41 |
|
| 42 |
|
|
|
|
| 43 |
def train_model(*inputs):
|
| 44 |
if "IS_SHARED_UI" in os.environ:
|
| 45 |
raise gr.Error("This Space only works in duplicated instances")
|
|
|
|
| 40 |
return(f"Evaluate Model {os.environ.get('HF_LLM_MODEL_ID')} from dataset {os.environ.get('HF_LLM_DATASET_ID')}")
|
| 41 |
|
| 42 |
|
| 43 |
+
|
| 44 |
def train_model(*inputs):
|
| 45 |
if "IS_SHARED_UI" in os.environ:
|
| 46 |
raise gr.Error("This Space only works in duplicated instances")
|
spanish_medica_llm.py
CHANGED
|
@@ -518,7 +518,8 @@ def configAndRunTraining(basemodel, dataset, eval_dataset, tokenizer):
|
|
| 518 |
save_steps = 50, # Save checkpoints every 50 steps
|
| 519 |
evaluation_strategy = "steps", # Evaluate the model every logging step
|
| 520 |
eval_steps = 50, # Evaluate and save checkpoints every 50 steps
|
| 521 |
-
do_eval = True, # Perform evaluation at the end of training
|
|
|
|
| 522 |
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" , # Name of the W&B run (optional)
|
| 523 |
fp16=True, #Set for GPU T4 for more powerful GPU as G-100 or another change to false and bf16 parameter
|
| 524 |
bf16=False
|
|
@@ -534,12 +535,17 @@ def configAndRunTraining(basemodel, dataset, eval_dataset, tokenizer):
|
|
| 534 |
|
| 535 |
basemodel.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
| 536 |
trainer.train()
|
|
|
|
|
|
|
| 537 |
trainer.push_to_hub()
|
| 538 |
|
| 539 |
|
|
|
|
|
|
|
| 540 |
def run_training_process():
|
| 541 |
#Loggin to Huggin Face
|
| 542 |
login(token = os.environ.get('HG_FACE_TOKEN'))
|
|
|
|
| 543 |
tokenizer = loadSpanishTokenizer()
|
| 544 |
medicalSpanishDataset = loadSpanishDataset()
|
| 545 |
train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid(
|
|
|
|
| 518 |
save_steps = 50, # Save checkpoints every 50 steps
|
| 519 |
evaluation_strategy = "steps", # Evaluate the model every logging step
|
| 520 |
eval_steps = 50, # Evaluate and save checkpoints every 50 steps
|
| 521 |
+
do_eval = True, # Perform evaluation at the end of training
|
| 522 |
+
report_to = None, # Comment this out if you don't want to use weights & baises
|
| 523 |
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" , # Name of the W&B run (optional)
|
| 524 |
fp16=True, #Set for GPU T4 for more powerful GPU as G-100 or another change to false and bf16 parameter
|
| 525 |
bf16=False
|
|
|
|
| 535 |
|
| 536 |
basemodel.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
| 537 |
trainer.train()
|
| 538 |
+
|
| 539 |
+
|
| 540 |
trainer.push_to_hub()
|
| 541 |
|
| 542 |
|
| 543 |
+
|
| 544 |
+
|
| 545 |
def run_training_process():
|
| 546 |
#Loggin to Huggin Face
|
| 547 |
login(token = os.environ.get('HG_FACE_TOKEN'))
|
| 548 |
+
os.environ['WANDB_DISABLED'] = 'true'
|
| 549 |
tokenizer = loadSpanishTokenizer()
|
| 550 |
medicalSpanishDataset = loadSpanishDataset()
|
| 551 |
train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid(
|