fix UI for gradio upgrade
Browse files
app.py
CHANGED
|
@@ -31,8 +31,14 @@ embedding_powers = [1. for i in range(max_tabs)]
|
|
| 31 |
embedding_base64s = [None for i in range(max_tabs)]
|
| 32 |
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def image_to_embedding(input_im):
|
|
|
|
| 36 |
input_im = Image.fromarray(input_im)
|
| 37 |
prepro = preprocess(input_im).unsqueeze(0).to(device)
|
| 38 |
with torch.no_grad():
|
|
@@ -42,6 +48,7 @@ def image_to_embedding(input_im):
|
|
| 42 |
return image_embeddings_np
|
| 43 |
|
| 44 |
def prompt_to_embedding(prompt):
|
|
|
|
| 45 |
text = tokenizer([prompt]).to(device)
|
| 46 |
with torch.no_grad():
|
| 47 |
prompt_embededdings = model.encode_text(text)
|
|
@@ -50,6 +57,7 @@ def prompt_to_embedding(prompt):
|
|
| 50 |
return prompt_embededdings_np
|
| 51 |
|
| 52 |
def embedding_to_image(embeddings):
|
|
|
|
| 53 |
size = math.ceil(math.sqrt(embeddings.shape[0]))
|
| 54 |
image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
|
| 55 |
image_embeddings_square.resize(size,size)
|
|
@@ -57,6 +65,7 @@ def embedding_to_image(embeddings):
|
|
| 57 |
return embedding_image
|
| 58 |
|
| 59 |
def embedding_to_base64(embeddings):
|
|
|
|
| 60 |
import base64
|
| 61 |
# ensure float32
|
| 62 |
embeddings = embeddings.astype(np.float32)
|
|
@@ -64,12 +73,22 @@ def embedding_to_base64(embeddings):
|
|
| 64 |
return embeddings_b64
|
| 65 |
|
| 66 |
def base64_to_embedding(embeddings_b64):
|
|
|
|
| 67 |
import base64
|
| 68 |
embeddings = base64.urlsafe_b64decode(embeddings_b64)
|
| 69 |
embeddings = np.frombuffer(embeddings, dtype=np.float32)
|
| 70 |
# embeddings = torch.tensor(embeddings)
|
| 71 |
return embeddings
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def safe_url(url):
|
| 74 |
import urllib.parse
|
| 75 |
url = urllib.parse.quote(url, safe=':/')
|
|
@@ -83,6 +102,7 @@ def main(
|
|
| 83 |
embeddings,
|
| 84 |
n_samples=4,
|
| 85 |
):
|
|
|
|
| 86 |
|
| 87 |
embeddings = base64_to_embedding(embeddings)
|
| 88 |
# convert to python array
|
|
@@ -117,17 +137,21 @@ def main(
|
|
| 117 |
return images
|
| 118 |
|
| 119 |
def on_image_load_update_embeddings(image_data):
|
|
|
|
| 120 |
# image to embeddings
|
| 121 |
if image_data is None:
|
| 122 |
# embeddings = prompt_to_embedding('')
|
| 123 |
# embeddings_b64 = embedding_to_base64(embeddings)
|
| 124 |
# return gr.Text.update(embeddings_b64)
|
| 125 |
-
return gr.Text.update('')
|
|
|
|
| 126 |
embeddings = image_to_embedding(image_data)
|
| 127 |
embeddings_b64 = embedding_to_base64(embeddings)
|
| 128 |
-
return gr.Text.update(embeddings_b64)
|
|
|
|
| 129 |
|
| 130 |
def on_prompt_change_update_embeddings(prompt):
|
|
|
|
| 131 |
# prompt to embeddings
|
| 132 |
if prompt is None or prompt == "":
|
| 133 |
embeddings = prompt_to_embedding('')
|
|
@@ -135,9 +159,10 @@ def on_prompt_change_update_embeddings(prompt):
|
|
| 135 |
return gr.Text.update(embedding_to_base64(embeddings))
|
| 136 |
embeddings = prompt_to_embedding(prompt)
|
| 137 |
embeddings_b64 = embedding_to_base64(embeddings)
|
| 138 |
-
return
|
| 139 |
|
| 140 |
def update_average_embeddings(embedding_base64s_state, embedding_powers):
|
|
|
|
| 141 |
final_embedding = None
|
| 142 |
num_embeddings = 0
|
| 143 |
for i, embedding_base64 in enumerate(embedding_base64s_state):
|
|
@@ -154,7 +179,7 @@ def update_average_embeddings(embedding_base64s_state, embedding_powers):
|
|
| 154 |
# embeddings = prompt_to_embedding('')
|
| 155 |
# embeddings_b64 = embedding_to_base64(embeddings)
|
| 156 |
# return gr.Text.update(embeddings_b64)
|
| 157 |
-
return
|
| 158 |
|
| 159 |
# TODO toggle this to support average or sum
|
| 160 |
# final_embedding = final_embedding / num_embeddings
|
|
@@ -166,22 +191,25 @@ def update_average_embeddings(embedding_base64s_state, embedding_powers):
|
|
| 166 |
return embeddings_b64
|
| 167 |
|
| 168 |
def on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx):
|
|
|
|
| 169 |
embedding_power_state[idx] = power
|
| 170 |
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
|
| 171 |
-
return
|
| 172 |
|
| 173 |
def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embedding_base64, idx):
|
|
|
|
| 174 |
embedding_base64s_state[idx] = embedding_base64 if embedding_base64 != '' else None
|
| 175 |
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
|
| 176 |
-
return
|
| 177 |
|
| 178 |
def on_embeddings_changed_update_plot(embeddings_b64):
|
|
|
|
| 179 |
# plot new embeddings
|
| 180 |
if embeddings_b64 is None or embeddings_b64 == "":
|
| 181 |
data = pd.DataFrame({
|
| 182 |
'embedding': [],
|
| 183 |
'index': []})
|
| 184 |
-
|
| 185 |
x="index",
|
| 186 |
y="embedding",
|
| 187 |
# color="country",
|
|
@@ -192,6 +220,7 @@ def on_embeddings_changed_update_plot(embeddings_b64):
|
|
| 192 |
# stroke_dash_legend_title="Country Cluster",
|
| 193 |
# height=300,
|
| 194 |
width=0)
|
|
|
|
| 195 |
|
| 196 |
embeddings = base64_to_embedding(embeddings_b64)
|
| 197 |
data = pd.DataFrame({
|
|
@@ -210,6 +239,7 @@ def on_embeddings_changed_update_plot(embeddings_b64):
|
|
| 210 |
width=embeddings.shape[0])
|
| 211 |
|
| 212 |
def on_example_image_click_set_image(input_image, image_url):
|
|
|
|
| 213 |
input_image.value = image_url
|
| 214 |
|
| 215 |
# device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
|
|
@@ -236,7 +266,7 @@ examples = [
|
|
| 236 |
# ["SohoJoeEth.jpeg", "Snoop Dogg.jpg", "SohoJoeEth + Snoop Dogg.jpeg"],
|
| 237 |
["pup1.jpg", "", "Pup no teacup.jpg"],
|
| 238 |
]
|
| 239 |
-
tile_size =
|
| 240 |
# image_folder = os.path.join("file", "images")
|
| 241 |
image_folder ="images"
|
| 242 |
|
|
@@ -349,7 +379,7 @@ Try uploading a few images and/or add some text prompts and search the embedding
|
|
| 349 |
# input_image.change(on_image_load, inputs= [input_image, plot])
|
| 350 |
with gr.Row():
|
| 351 |
with gr.Column(scale=2, min_width=240):
|
| 352 |
-
input_prompts[i] = gr.Textbox(label="Text Prompt", show_label=True)
|
| 353 |
with gr.Column(scale=3, min_width=600):
|
| 354 |
with gr.Row():
|
| 355 |
# with gr.Slider(min=-5, max=5, value=1, label="Power", show_label=True):
|
|
@@ -357,7 +387,7 @@ Try uploading a few images and/or add some text prompts and search the embedding
|
|
| 357 |
embedding_powers[i] = gr.Slider(minimum=-3, maximum=3, value=1, label="Power", show_label=True, interactive=True)
|
| 358 |
with gr.Row():
|
| 359 |
with gr.Accordion(f"Embeddings (base64)", open=False):
|
| 360 |
-
embedding_base64s[i] = gr.Textbox(show_label=False)
|
| 361 |
for idx, (tab_title, examples) in enumerate(tabbed_examples.items()):
|
| 362 |
with gr.Tab(tab_title):
|
| 363 |
with gr.Row():
|
|
@@ -395,15 +425,52 @@ Try uploading a few images and/or add some text prompts and search the embedding
|
|
| 395 |
|
| 396 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
| 397 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
for i in range(max_tabs):
|
| 399 |
-
input_images[i].change(on_image_load_update_embeddings, input_images[i], [embedding_base64s[i]])
|
| 400 |
-
input_prompts[i].change(on_prompt_change_update_embeddings, input_prompts[i], [embedding_base64s[i]])
|
| 401 |
-
embedding_base64s[i].change(on_embeddings_changed_update_plot, embedding_base64s[i], [embedding_plots[i]])
|
| 402 |
idx_state = gr.State(value=i)
|
| 403 |
-
|
| 404 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
|
| 406 |
-
average_embedding_base64.change(on_embeddings_changed_update_plot, average_embedding_base64, average_embedding_plot)
|
| 407 |
|
| 408 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
| 409 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
|
@@ -439,4 +506,4 @@ My interest is to use CLIP for image/video understanding (see [CLIP_visual-spati
|
|
| 439 |
# {height=100 width=100}
|
| 440 |
|
| 441 |
if __name__ == "__main__":
|
| 442 |
-
demo.launch()
|
|
|
|
| 31 |
embedding_base64s = [None for i in range(max_tabs)]
|
| 32 |
# embedding_base64s = gr.State(value=[None for i in range(max_tabs)])
|
| 33 |
|
| 34 |
+
debug_print_on = False
|
| 35 |
+
|
| 36 |
+
def debug_print(*args, **kwargs):
|
| 37 |
+
if debug_print_on:
|
| 38 |
+
print(*args, **kwargs)
|
| 39 |
|
| 40 |
def image_to_embedding(input_im):
|
| 41 |
+
# debug_print("image_to_embedding")
|
| 42 |
input_im = Image.fromarray(input_im)
|
| 43 |
prepro = preprocess(input_im).unsqueeze(0).to(device)
|
| 44 |
with torch.no_grad():
|
|
|
|
| 48 |
return image_embeddings_np
|
| 49 |
|
| 50 |
def prompt_to_embedding(prompt):
|
| 51 |
+
# debug_print("prompt_to_embedding")
|
| 52 |
text = tokenizer([prompt]).to(device)
|
| 53 |
with torch.no_grad():
|
| 54 |
prompt_embededdings = model.encode_text(text)
|
|
|
|
| 57 |
return prompt_embededdings_np
|
| 58 |
|
| 59 |
def embedding_to_image(embeddings):
|
| 60 |
+
# debug_print("embedding_to_image")
|
| 61 |
size = math.ceil(math.sqrt(embeddings.shape[0]))
|
| 62 |
image_embeddings_square = np.pad(embeddings, (0, size**2 - embeddings.shape[0]), 'constant')
|
| 63 |
image_embeddings_square.resize(size,size)
|
|
|
|
| 65 |
return embedding_image
|
| 66 |
|
| 67 |
def embedding_to_base64(embeddings):
|
| 68 |
+
# debug_print("embedding_to_base64")
|
| 69 |
import base64
|
| 70 |
# ensure float32
|
| 71 |
embeddings = embeddings.astype(np.float32)
|
|
|
|
| 73 |
return embeddings_b64
|
| 74 |
|
| 75 |
def base64_to_embedding(embeddings_b64):
|
| 76 |
+
# debug_print("base64_to_embedding")
|
| 77 |
import base64
|
| 78 |
embeddings = base64.urlsafe_b64decode(embeddings_b64)
|
| 79 |
embeddings = np.frombuffer(embeddings, dtype=np.float32)
|
| 80 |
# embeddings = torch.tensor(embeddings)
|
| 81 |
return embeddings
|
| 82 |
|
| 83 |
+
def is_prompt_embeddings(prompt):
|
| 84 |
+
if prompt is None or prompt == "":
|
| 85 |
+
return False
|
| 86 |
+
try:
|
| 87 |
+
embedding = base64_to_embedding(prompt)
|
| 88 |
+
return True
|
| 89 |
+
except Exception as e:
|
| 90 |
+
return False
|
| 91 |
+
|
| 92 |
def safe_url(url):
|
| 93 |
import urllib.parse
|
| 94 |
url = urllib.parse.quote(url, safe=':/')
|
|
|
|
| 102 |
embeddings,
|
| 103 |
n_samples=4,
|
| 104 |
):
|
| 105 |
+
debug_print("main")
|
| 106 |
|
| 107 |
embeddings = base64_to_embedding(embeddings)
|
| 108 |
# convert to python array
|
|
|
|
| 137 |
return images
|
| 138 |
|
| 139 |
def on_image_load_update_embeddings(image_data):
|
| 140 |
+
debug_print("on_image_load_update_embeddings")
|
| 141 |
# image to embeddings
|
| 142 |
if image_data is None:
|
| 143 |
# embeddings = prompt_to_embedding('')
|
| 144 |
# embeddings_b64 = embedding_to_base64(embeddings)
|
| 145 |
# return gr.Text.update(embeddings_b64)
|
| 146 |
+
# return gr.Text.update('')
|
| 147 |
+
return ''
|
| 148 |
embeddings = image_to_embedding(image_data)
|
| 149 |
embeddings_b64 = embedding_to_base64(embeddings)
|
| 150 |
+
# return gr.Text.update(embeddings_b64)
|
| 151 |
+
return embeddings_b64
|
| 152 |
|
| 153 |
def on_prompt_change_update_embeddings(prompt):
|
| 154 |
+
debug_print("on_prompt_change_update_embeddings")
|
| 155 |
# prompt to embeddings
|
| 156 |
if prompt is None or prompt == "":
|
| 157 |
embeddings = prompt_to_embedding('')
|
|
|
|
| 159 |
return gr.Text.update(embedding_to_base64(embeddings))
|
| 160 |
embeddings = prompt_to_embedding(prompt)
|
| 161 |
embeddings_b64 = embedding_to_base64(embeddings)
|
| 162 |
+
return embeddings_b64
|
| 163 |
|
| 164 |
def update_average_embeddings(embedding_base64s_state, embedding_powers):
|
| 165 |
+
debug_print("update_average_embeddings")
|
| 166 |
final_embedding = None
|
| 167 |
num_embeddings = 0
|
| 168 |
for i, embedding_base64 in enumerate(embedding_base64s_state):
|
|
|
|
| 179 |
# embeddings = prompt_to_embedding('')
|
| 180 |
# embeddings_b64 = embedding_to_base64(embeddings)
|
| 181 |
# return gr.Text.update(embeddings_b64)
|
| 182 |
+
return ''
|
| 183 |
|
| 184 |
# TODO toggle this to support average or sum
|
| 185 |
# final_embedding = final_embedding / num_embeddings
|
|
|
|
| 191 |
return embeddings_b64
|
| 192 |
|
| 193 |
def on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx):
|
| 194 |
+
debug_print("on_power_change_update_average_embeddings")
|
| 195 |
embedding_power_state[idx] = power
|
| 196 |
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
|
| 197 |
+
return embeddings_b64
|
| 198 |
|
| 199 |
def on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embedding_base64, idx):
|
| 200 |
+
debug_print("on_embeddings_changed_update_average_embeddings")
|
| 201 |
embedding_base64s_state[idx] = embedding_base64 if embedding_base64 != '' else None
|
| 202 |
embeddings_b64 = update_average_embeddings(embedding_base64s_state, embedding_power_state)
|
| 203 |
+
return embeddings_b64
|
| 204 |
|
| 205 |
def on_embeddings_changed_update_plot(embeddings_b64):
|
| 206 |
+
debug_print("on_embeddings_changed_update_plot")
|
| 207 |
# plot new embeddings
|
| 208 |
if embeddings_b64 is None or embeddings_b64 == "":
|
| 209 |
data = pd.DataFrame({
|
| 210 |
'embedding': [],
|
| 211 |
'index': []})
|
| 212 |
+
update = gr.LinePlot.update(data,
|
| 213 |
x="index",
|
| 214 |
y="embedding",
|
| 215 |
# color="country",
|
|
|
|
| 220 |
# stroke_dash_legend_title="Country Cluster",
|
| 221 |
# height=300,
|
| 222 |
width=0)
|
| 223 |
+
return update
|
| 224 |
|
| 225 |
embeddings = base64_to_embedding(embeddings_b64)
|
| 226 |
data = pd.DataFrame({
|
|
|
|
| 239 |
width=embeddings.shape[0])
|
| 240 |
|
| 241 |
def on_example_image_click_set_image(input_image, image_url):
|
| 242 |
+
debug_print("on_example_image_click_set_image")
|
| 243 |
input_image.value = image_url
|
| 244 |
|
| 245 |
# device = torch.device("mps" if torch.backends.mps.is_available() else "cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 266 |
# ["SohoJoeEth.jpeg", "Snoop Dogg.jpg", "SohoJoeEth + Snoop Dogg.jpeg"],
|
| 267 |
["pup1.jpg", "", "Pup no teacup.jpg"],
|
| 268 |
]
|
| 269 |
+
tile_size = 110
|
| 270 |
# image_folder = os.path.join("file", "images")
|
| 271 |
image_folder ="images"
|
| 272 |
|
|
|
|
| 379 |
# input_image.change(on_image_load, inputs= [input_image, plot])
|
| 380 |
with gr.Row():
|
| 381 |
with gr.Column(scale=2, min_width=240):
|
| 382 |
+
input_prompts[i] = gr.Textbox(label="Text Prompt", show_label=True, max_lines=4)
|
| 383 |
with gr.Column(scale=3, min_width=600):
|
| 384 |
with gr.Row():
|
| 385 |
# with gr.Slider(min=-5, max=5, value=1, label="Power", show_label=True):
|
|
|
|
| 387 |
embedding_powers[i] = gr.Slider(minimum=-3, maximum=3, value=1, label="Power", show_label=True, interactive=True)
|
| 388 |
with gr.Row():
|
| 389 |
with gr.Accordion(f"Embeddings (base64)", open=False):
|
| 390 |
+
embedding_base64s[i] = gr.Textbox(show_label=False, live=True)
|
| 391 |
for idx, (tab_title, examples) in enumerate(tabbed_examples.items()):
|
| 392 |
with gr.Tab(tab_title):
|
| 393 |
with gr.Row():
|
|
|
|
| 425 |
|
| 426 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
| 427 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
| 428 |
+
|
| 429 |
+
def on_image_load(input_image, idx_state, embedding_base64s_state, embedding_power_state):
|
| 430 |
+
debug_print("on_image_load")
|
| 431 |
+
embeddings_b64 = on_image_load_update_embeddings(input_image)
|
| 432 |
+
new_plot = on_embeddings_changed_update_plot(embeddings_b64)
|
| 433 |
+
average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
|
| 434 |
+
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
|
| 435 |
+
return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot
|
| 436 |
+
|
| 437 |
+
def on_prompt_change(prompt, idx_state, embedding_base64s_state, embedding_power_state):
|
| 438 |
+
debug_print("on_prompt_change")
|
| 439 |
+
if is_prompt_embeddings(prompt):
|
| 440 |
+
embeddings_b64 = prompt
|
| 441 |
+
else:
|
| 442 |
+
embeddings_b64 = on_prompt_change_update_embeddings(prompt)
|
| 443 |
+
new_plot = on_embeddings_changed_update_plot(embeddings_b64)
|
| 444 |
+
average_embeddings_b64 = on_embeddings_changed_update_average_embeddings(embedding_base64s_state, embedding_power_state, embeddings_b64, idx_state)
|
| 445 |
+
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
|
| 446 |
+
return embeddings_b64, new_plot, average_embeddings_b64, new_average_plot
|
| 447 |
+
|
| 448 |
+
def on_power_change(power, idx_state, embedding_base64s_state, embedding_power_state):
|
| 449 |
+
debug_print("on_power_change")
|
| 450 |
+
average_embeddings_b64 = on_power_change_update_average_embeddings(embedding_base64s_state, embedding_power_state, power, idx_state)
|
| 451 |
+
new_average_plot = on_embeddings_changed_update_plot(average_embeddings_b64)
|
| 452 |
+
return average_embeddings_b64, new_average_plot
|
| 453 |
+
|
| 454 |
for i in range(max_tabs):
|
|
|
|
|
|
|
|
|
|
| 455 |
idx_state = gr.State(value=i)
|
| 456 |
+
input_images[i].change(on_image_load,
|
| 457 |
+
[input_images[i], idx_state, embedding_base64s_state, embedding_power_state],
|
| 458 |
+
[embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
|
| 459 |
+
input_prompts[i].change(on_prompt_change,
|
| 460 |
+
[input_prompts[i], idx_state, embedding_base64s_state, embedding_power_state],
|
| 461 |
+
[embedding_base64s[i], embedding_plots[i], average_embedding_base64, average_embedding_plot])
|
| 462 |
+
embedding_powers[i].change(on_power_change,
|
| 463 |
+
[embedding_powers[i], idx_state, embedding_base64s_state, embedding_power_state],
|
| 464 |
+
[average_embedding_base64, average_embedding_plot])
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
# input_images[i].change(on_image_load_update_embeddings, input_images[i], embedding_base64s[i])
|
| 468 |
+
# input_prompts[i].change(on_prompt_change_update_embeddings, input_prompts[i], embedding_base64s[i])
|
| 469 |
+
# embedding_base64s[i].change(on_embeddings_changed_update_plot, embedding_base64s[i], embedding_plots[i])
|
| 470 |
+
# embedding_base64s[i].change(on_embeddings_changed_update_average_embeddings, [embedding_base64s_state, embedding_power_state, embedding_base64s[i], idx_state], average_embedding_base64)
|
| 471 |
+
# embedding_powers[i].change(on_power_change_update_average_embeddings, [embedding_base64s_state, embedding_power_state, embedding_powers[i], idx_state], average_embedding_base64)
|
| 472 |
|
| 473 |
+
# average_embedding_base64.change(on_embeddings_changed_update_plot, average_embedding_base64, average_embedding_plot)
|
| 474 |
|
| 475 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
| 476 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
|
|
|
| 506 |
# {height=100 width=100}
|
| 507 |
|
| 508 |
if __name__ == "__main__":
|
| 509 |
+
demo.launch(debug=True)
|