Joe Booth
commited on
Commit
·
0e61e04
1
Parent(s):
8498cb9
improve image load success rate
Browse files
app.py
CHANGED
|
@@ -70,6 +70,14 @@ def base64_to_embedding(embeddings_b64):
|
|
| 70 |
# embeddings = torch.tensor(embeddings)
|
| 71 |
return embeddings
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
def main(
|
| 74 |
# input_im,
|
| 75 |
embeddings,
|
|
@@ -84,17 +92,26 @@ def main(
|
|
| 84 |
for result in results:
|
| 85 |
if len(images) >= n_samples:
|
| 86 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
# dowload image
|
| 88 |
import requests
|
| 89 |
from io import BytesIO
|
| 90 |
try:
|
| 91 |
-
response = requests.get(
|
| 92 |
if not response.ok:
|
| 93 |
continue
|
| 94 |
bytes = BytesIO(response.content)
|
| 95 |
image = Image.open(bytes)
|
| 96 |
-
image.
|
| 97 |
-
|
|
|
|
| 98 |
except Exception as e:
|
| 99 |
print(e)
|
| 100 |
return images
|
|
@@ -367,7 +384,7 @@ Try uploading a few images and/or add some text prompts and click generate image
|
|
| 367 |
with gr.Column(scale=3, min_width=200):
|
| 368 |
submit = gr.Button("Search embedding space")
|
| 369 |
with gr.Row():
|
| 370 |
-
output = gr.Gallery(label="
|
| 371 |
|
| 372 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
| 373 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
|
@@ -383,7 +400,7 @@ Try uploading a few images and/or add some text prompts and click generate image
|
|
| 383 |
|
| 384 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
| 385 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
| 386 |
-
output.style(grid=
|
| 387 |
|
| 388 |
with gr.Row():
|
| 389 |
gr.Markdown(
|
|
@@ -394,7 +411,7 @@ My interest is to use CLIP for image/video understanding (see [CLIP_visual-spati
|
|
| 394 |
### Initial Features
|
| 395 |
|
| 396 |
- Combine up to 10 Images and/or text inputs to create an average embedding space.
|
| 397 |
-
- Search the laion 5b
|
| 398 |
|
| 399 |
### Known limitations
|
| 400 |
|
|
@@ -402,7 +419,7 @@ My interest is to use CLIP for image/video understanding (see [CLIP_visual-spati
|
|
| 402 |
|
| 403 |
### Acknowledgements
|
| 404 |
|
| 405 |
-
- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [
|
| 406 |
- [CLIP](https://openai.com/blog/clip/)
|
| 407 |
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
|
| 408 |
|
|
|
|
| 70 |
# embeddings = torch.tensor(embeddings)
|
| 71 |
return embeddings
|
| 72 |
|
| 73 |
+
def safe_url(url):
|
| 74 |
+
import urllib.parse
|
| 75 |
+
url = urllib.parse.quote(url, safe=':/')
|
| 76 |
+
# if url has two .jpg filenames, take the first one
|
| 77 |
+
if url.count('.jpg') > 0:
|
| 78 |
+
url = url.split('.jpg')[0] + '.jpg'
|
| 79 |
+
return url
|
| 80 |
+
|
| 81 |
def main(
|
| 82 |
# input_im,
|
| 83 |
embeddings,
|
|
|
|
| 92 |
for result in results:
|
| 93 |
if len(images) >= n_samples:
|
| 94 |
break
|
| 95 |
+
url = safe_url(result["url"])
|
| 96 |
+
similarty = float("{:.4f}".format(result["similarity"]))
|
| 97 |
+
title = str(similarty) + ' ' + result["caption"]
|
| 98 |
+
|
| 99 |
+
# we could just return the url and the control would take care of the rest
|
| 100 |
+
# however, if the url returns an error, the page crashes.
|
| 101 |
+
# images.append((url, title))
|
| 102 |
+
# continue
|
| 103 |
# dowload image
|
| 104 |
import requests
|
| 105 |
from io import BytesIO
|
| 106 |
try:
|
| 107 |
+
response = requests.get(url)
|
| 108 |
if not response.ok:
|
| 109 |
continue
|
| 110 |
bytes = BytesIO(response.content)
|
| 111 |
image = Image.open(bytes)
|
| 112 |
+
if image.mode != 'RGB':
|
| 113 |
+
image = image.convert('RGB')
|
| 114 |
+
images.append((image, title))
|
| 115 |
except Exception as e:
|
| 116 |
print(e)
|
| 117 |
return images
|
|
|
|
| 384 |
with gr.Column(scale=3, min_width=200):
|
| 385 |
submit = gr.Button("Search embedding space")
|
| 386 |
with gr.Row():
|
| 387 |
+
output = gr.Gallery(label="Closest images in Laion 5b using kNN", show_label=True)
|
| 388 |
|
| 389 |
embedding_base64s_state = gr.State(value=[None for i in range(max_tabs)])
|
| 390 |
embedding_power_state = gr.State(value=[1. for i in range(max_tabs)])
|
|
|
|
| 400 |
|
| 401 |
# submit.click(main, inputs= [embedding_base64s[0], scale, n_samples, steps, seed], outputs=output)
|
| 402 |
submit.click(main, inputs= [average_embedding_base64, n_samples], outputs=output)
|
| 403 |
+
output.style(grid=[4], height="auto")
|
| 404 |
|
| 405 |
with gr.Row():
|
| 406 |
gr.Markdown(
|
|
|
|
| 411 |
### Initial Features
|
| 412 |
|
| 413 |
- Combine up to 10 Images and/or text inputs to create an average embedding space.
|
| 414 |
+
- Search the laion 5b images via a kNN search
|
| 415 |
|
| 416 |
### Known limitations
|
| 417 |
|
|
|
|
| 419 |
|
| 420 |
### Acknowledgements
|
| 421 |
|
| 422 |
+
- I heavily build on [clip-retrieval](https://rom1504.github.io/clip-retrieval/) and use their API. Please [cite](https://github.com/rom1504/clip-retrieval#citation) the authors if you use this work.
|
| 423 |
- [CLIP](https://openai.com/blog/clip/)
|
| 424 |
- [Stable Diffusion](https://github.com/CompVis/stable-diffusion)
|
| 425 |
|