Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,4 @@
|
|
| 1 |
import subprocess
|
| 2 |
-
|
| 3 |
-
# Minimal essential installs (FlashAttention pinned version, skipping cuda build)
|
| 4 |
-
subprocess.run(
|
| 5 |
-
"pip install flash-attn==2.7.0.post2 --no-build-isolation",
|
| 6 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 7 |
-
shell=True
|
| 8 |
-
)
|
| 9 |
-
subprocess.run("pip install transformers 'accelerate>=0.26.0' gradio==3.30.0", shell=True)
|
| 10 |
-
|
| 11 |
-
# Optional: This can boost performance on some systems.
|
| 12 |
-
import torch
|
| 13 |
-
torch.backends.cudnn.benchmark = True
|
| 14 |
-
|
| 15 |
import os
|
| 16 |
import re
|
| 17 |
import logging
|
|
@@ -19,103 +6,75 @@ import base64
|
|
| 19 |
from threading import Thread
|
| 20 |
from typing import List
|
| 21 |
|
|
|
|
| 22 |
import gradio as gr
|
| 23 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 24 |
|
| 25 |
-
#
|
| 26 |
-
# 1. Setup Model & Tokenizer
|
| 27 |
-
# ----------------------------------------------------------------------
|
| 28 |
-
model_name = "smirki/UIGEN-T1.1-Qwen-7B" # change as needed
|
| 29 |
-
|
| 30 |
logging.basicConfig(level=logging.INFO)
|
| 31 |
logger = logging.getLogger(__name__)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
logger.info("Loading model and tokenizer...")
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
model_name,
|
| 36 |
torch_dtype=torch.bfloat16,
|
| 37 |
-
device_map="auto",
|
| 38 |
trust_remote_code=True,
|
| 39 |
)
|
| 40 |
-
model.eval()
|
| 41 |
|
| 42 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 43 |
model_name,
|
| 44 |
trust_remote_code=True
|
| 45 |
)
|
| 46 |
-
logger.info("Model and tokenizer loaded successfully.")
|
| 47 |
|
| 48 |
-
#
|
| 49 |
-
# 2. Two-Phase Prompt Templates
|
| 50 |
-
# ----------------------------------------------------------------------
|
| 51 |
s1_inference_prompt_think_only = """<|im_start|>user
|
| 52 |
{question}<|im_end|>
|
| 53 |
<|im_start|>assistant
|
| 54 |
<|im_start|>think
|
| 55 |
"""
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
# 3. Generation Parameter Setup
|
| 59 |
-
# ----------------------------------------------------------------------
|
| 60 |
THINK_MAX_NEW_TOKENS = 2048
|
| 61 |
ANSWER_MAX_NEW_TOKENS = 2048
|
| 62 |
|
| 63 |
def initialize_gen_kwargs():
|
| 64 |
return {
|
| 65 |
-
"max_new_tokens": 512,
|
| 66 |
"do_sample": True,
|
| 67 |
"temperature": 0.7,
|
| 68 |
"top_p": 0.9,
|
| 69 |
"repetition_penalty": 1.05,
|
| 70 |
-
# "eos_token_id": model.generation_config.eos_token_id,
|
| 71 |
"pad_token_id": tokenizer.pad_token_id,
|
| 72 |
"use_cache": True,
|
| 73 |
-
"streamer": None, # will attach actual streamer at runtime
|
| 74 |
}
|
| 75 |
|
| 76 |
-
# ----------------------------------------------------------------------
|
| 77 |
-
# 4. Helper to submit chat
|
| 78 |
-
# ----------------------------------------------------------------------
|
| 79 |
-
def submit_chat(chatbot, text_input):
|
| 80 |
-
if not text_input.strip():
|
| 81 |
-
return chatbot, ""
|
| 82 |
-
chatbot.append((text_input, ""))
|
| 83 |
-
logger.info(f"New chat prompt: {text_input}")
|
| 84 |
-
return chatbot, ""
|
| 85 |
-
|
| 86 |
-
# ----------------------------------------------------------------------
|
| 87 |
-
# 5. Artifacts Handling
|
| 88 |
-
# ----------------------------------------------------------------------
|
| 89 |
def extract_html_code_block(text: str) -> str:
|
| 90 |
-
"""
|
| 91 |
-
Extract the first ```html ... ``` code block (if any).
|
| 92 |
-
"""
|
| 93 |
pattern = r"```html\s*(.*?)\s*```"
|
| 94 |
match = re.search(pattern, text, re.DOTALL)
|
| 95 |
-
if match
|
| 96 |
-
return match.group(1).strip()
|
| 97 |
-
return text.strip()
|
| 98 |
|
| 99 |
def send_to_sandbox(html_code: str) -> str:
|
| 100 |
-
"""
|
| 101 |
-
Renders the extracted HTML in an iframe.
|
| 102 |
-
"""
|
| 103 |
encoded_html = base64.b64encode(html_code.encode("utf-8")).decode("utf-8")
|
| 104 |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
|
| 105 |
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
""
|
| 112 |
-
|
| 113 |
-
2) Answer Phase: produce final user-facing answer + HTML artifact if present.
|
| 114 |
-
"""
|
| 115 |
-
# Phase 1: "think" phase
|
| 116 |
-
last_query = chatbot[-1][0]
|
| 117 |
-
formatted_think_prompt = s1_inference_prompt_think_only.format(question=last_query)
|
| 118 |
|
|
|
|
|
|
|
| 119 |
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt").to(model.device)
|
| 120 |
attention_mask_think = (input_ids_think != tokenizer.pad_token_id).to(model.device)
|
| 121 |
|
|
@@ -127,24 +86,27 @@ def ovis_chat(chatbot: List[List[str]]):
|
|
| 127 |
full_think = ""
|
| 128 |
try:
|
| 129 |
with torch.inference_mode():
|
| 130 |
-
|
| 131 |
-
target=lambda: model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
for new_text in think_streamer:
|
| 136 |
full_think += new_text
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
yield chatbot, ""
|
| 141 |
-
thread_think.join()
|
| 142 |
except Exception as e:
|
| 143 |
logger.error(f"Error during think phase: {e}")
|
| 144 |
-
|
|
|
|
| 145 |
return
|
| 146 |
|
| 147 |
-
# Phase
|
| 148 |
new_prompt = (
|
| 149 |
formatted_think_prompt
|
| 150 |
+ full_think.strip()
|
|
@@ -161,101 +123,92 @@ def ovis_chat(chatbot: List[List[str]]):
|
|
| 161 |
full_answer = ""
|
| 162 |
try:
|
| 163 |
with torch.inference_mode():
|
| 164 |
-
|
| 165 |
-
target=lambda: model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
for new_text in answer_streamer:
|
| 170 |
full_answer += new_text
|
| 171 |
-
# For the UI, display both think + answer
|
| 172 |
display_text = (
|
| 173 |
f"<|im_start|>think\n{full_think.strip()}\n\n"
|
| 174 |
f"<|im_start|>answer\n{full_answer.strip()}"
|
| 175 |
)
|
| 176 |
-
|
| 177 |
-
yield
|
| 178 |
-
|
| 179 |
except Exception as e:
|
| 180 |
logger.error(f"Error during answer phase: {e}")
|
| 181 |
-
|
|
|
|
| 182 |
return
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
| 188 |
|
| 189 |
-
# ----------------------------------------------------------------------
|
| 190 |
-
# 7. Clearing
|
| 191 |
-
# ----------------------------------------------------------------------
|
| 192 |
def clear_chat():
|
| 193 |
return [], "", ""
|
| 194 |
|
| 195 |
-
#
|
| 196 |
-
|
| 197 |
-
# ----------------------------------------------------------------------
|
| 198 |
-
css_code = """
|
| 199 |
.left_header {
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
}
|
| 205 |
.right_panel {
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
}
|
| 211 |
.render_header {
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
}
|
| 217 |
.header_btn {
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
}
|
| 224 |
-
.render_header > .header_btn:nth-child(1) {
|
| 225 |
-
background-color: #f5222d;
|
| 226 |
-
}
|
| 227 |
-
.render_header > .header_btn:nth-child(2) {
|
| 228 |
-
background-color: #faad14;
|
| 229 |
-
}
|
| 230 |
-
.render_header > .header_btn:nth-child(3) {
|
| 231 |
-
background-color: #52c41a;
|
| 232 |
}
|
|
|
|
|
|
|
|
|
|
| 233 |
.right_content {
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
}
|
| 240 |
-
.html_content {
|
| 241 |
-
width: 100%;
|
| 242 |
-
height: 920px;
|
| 243 |
}
|
|
|
|
| 244 |
"""
|
| 245 |
|
| 246 |
-
|
| 247 |
<svg width="40" height="40" viewBox="0 0 45 45" fill="none" xmlns="http://www.w3.org/2000/svg">
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
</svg>
|
| 253 |
"""
|
| 254 |
|
| 255 |
-
with gr.Blocks(title=model_name.split('/')[-1], css=
|
| 256 |
gr.HTML(f"""
|
| 257 |
<div class="left_header" style="margin-bottom: 20px;">
|
| 258 |
-
{
|
| 259 |
<h1>{model_name.split('/')[-1]} - Chat + Artifacts</h1>
|
| 260 |
<p>(Two-phase chain-of-thought with artifact extraction)</p>
|
| 261 |
</div>
|
|
@@ -277,6 +230,7 @@ with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
|
| 277 |
with gr.Row():
|
| 278 |
submit_btn = gr.Button("Send", variant="primary")
|
| 279 |
clear_btn = gr.Button("Clear", variant="secondary")
|
|
|
|
| 280 |
with gr.Column(scale=6):
|
| 281 |
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
|
| 282 |
artifact_html = gr.HTML(
|
|
@@ -284,23 +238,38 @@ with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
|
| 284 |
elem_classes="html_content"
|
| 285 |
)
|
| 286 |
|
| 287 |
-
#
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
).then(
|
| 291 |
-
|
|
|
|
|
|
|
| 292 |
)
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
).then(
|
| 297 |
-
|
|
|
|
|
|
|
| 298 |
)
|
| 299 |
|
| 300 |
clear_btn.click(
|
| 301 |
-
clear_chat,
|
| 302 |
outputs=[chatbot, text_input, artifact_html]
|
| 303 |
)
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
|
|
|
|
|
| 1 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
import logging
|
|
|
|
| 6 |
from threading import Thread
|
| 7 |
from typing import List
|
| 8 |
|
| 9 |
+
import torch
|
| 10 |
import gradio as gr
|
| 11 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 12 |
|
| 13 |
+
# Setup logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
logging.basicConfig(level=logging.INFO)
|
| 15 |
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
# Optional: Performance boost
|
| 18 |
+
torch.backends.cudnn.benchmark = True
|
| 19 |
+
|
| 20 |
+
# Model setup
|
| 21 |
+
model_name = "smirki/UIGEN-T1.1-Qwen-7B"
|
| 22 |
+
|
| 23 |
logger.info("Loading model and tokenizer...")
|
| 24 |
model = AutoModelForCausalLM.from_pretrained(
|
| 25 |
model_name,
|
| 26 |
torch_dtype=torch.bfloat16,
|
| 27 |
+
device_map="auto",
|
| 28 |
trust_remote_code=True,
|
| 29 |
)
|
| 30 |
+
model.eval()
|
| 31 |
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 33 |
model_name,
|
| 34 |
trust_remote_code=True
|
| 35 |
)
|
|
|
|
| 36 |
|
| 37 |
+
# Prompt templates
|
|
|
|
|
|
|
| 38 |
s1_inference_prompt_think_only = """<|im_start|>user
|
| 39 |
{question}<|im_end|>
|
| 40 |
<|im_start|>assistant
|
| 41 |
<|im_start|>think
|
| 42 |
"""
|
| 43 |
|
| 44 |
+
# Constants
|
|
|
|
|
|
|
| 45 |
THINK_MAX_NEW_TOKENS = 2048
|
| 46 |
ANSWER_MAX_NEW_TOKENS = 2048
|
| 47 |
|
| 48 |
def initialize_gen_kwargs():
|
| 49 |
return {
|
| 50 |
+
"max_new_tokens": 512,
|
| 51 |
"do_sample": True,
|
| 52 |
"temperature": 0.7,
|
| 53 |
"top_p": 0.9,
|
| 54 |
"repetition_penalty": 1.05,
|
|
|
|
| 55 |
"pad_token_id": tokenizer.pad_token_id,
|
| 56 |
"use_cache": True,
|
|
|
|
| 57 |
}
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
def extract_html_code_block(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 60 |
pattern = r"```html\s*(.*?)\s*```"
|
| 61 |
match = re.search(pattern, text, re.DOTALL)
|
| 62 |
+
return match.group(1).strip() if match else text.strip()
|
|
|
|
|
|
|
| 63 |
|
| 64 |
def send_to_sandbox(html_code: str) -> str:
|
|
|
|
|
|
|
|
|
|
| 65 |
encoded_html = base64.b64encode(html_code.encode("utf-8")).decode("utf-8")
|
| 66 |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
|
| 67 |
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
|
| 68 |
|
| 69 |
+
def chat_stream(history: List[List[str]], text: str):
|
| 70 |
+
if not text.strip():
|
| 71 |
+
return history
|
| 72 |
+
|
| 73 |
+
history.append([text, ""])
|
| 74 |
+
logger.info(f"New chat prompt: {text}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
# Think Phase
|
| 77 |
+
formatted_think_prompt = s1_inference_prompt_think_only.format(question=text)
|
| 78 |
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt").to(model.device)
|
| 79 |
attention_mask_think = (input_ids_think != tokenizer.pad_token_id).to(model.device)
|
| 80 |
|
|
|
|
| 86 |
full_think = ""
|
| 87 |
try:
|
| 88 |
with torch.inference_mode():
|
| 89 |
+
thread = Thread(
|
| 90 |
+
target=lambda: model.generate(
|
| 91 |
+
input_ids=input_ids_think,
|
| 92 |
+
attention_mask=attention_mask_think,
|
| 93 |
+
**gen_kwargs_think
|
| 94 |
+
)
|
| 95 |
)
|
| 96 |
+
thread.start()
|
| 97 |
+
|
| 98 |
for new_text in think_streamer:
|
| 99 |
full_think += new_text
|
| 100 |
+
history[-1][1] = f"<|im_start|>think\n{full_think.strip()}"
|
| 101 |
+
yield history
|
| 102 |
+
thread.join()
|
|
|
|
|
|
|
| 103 |
except Exception as e:
|
| 104 |
logger.error(f"Error during think phase: {e}")
|
| 105 |
+
history[-1][1] = f"Error in think phase: {str(e)}"
|
| 106 |
+
yield history
|
| 107 |
return
|
| 108 |
|
| 109 |
+
# Answer Phase
|
| 110 |
new_prompt = (
|
| 111 |
formatted_think_prompt
|
| 112 |
+ full_think.strip()
|
|
|
|
| 123 |
full_answer = ""
|
| 124 |
try:
|
| 125 |
with torch.inference_mode():
|
| 126 |
+
thread = Thread(
|
| 127 |
+
target=lambda: model.generate(
|
| 128 |
+
input_ids=input_ids_answer,
|
| 129 |
+
attention_mask=attention_mask_answer,
|
| 130 |
+
**gen_kwargs_answer
|
| 131 |
+
)
|
| 132 |
)
|
| 133 |
+
thread.start()
|
| 134 |
+
|
| 135 |
for new_text in answer_streamer:
|
| 136 |
full_answer += new_text
|
|
|
|
| 137 |
display_text = (
|
| 138 |
f"<|im_start|>think\n{full_think.strip()}\n\n"
|
| 139 |
f"<|im_start|>answer\n{full_answer.strip()}"
|
| 140 |
)
|
| 141 |
+
history[-1][1] = display_text
|
| 142 |
+
yield history
|
| 143 |
+
thread.join()
|
| 144 |
except Exception as e:
|
| 145 |
logger.error(f"Error during answer phase: {e}")
|
| 146 |
+
history[-1][1] = f"Error in answer phase: {str(e)}"
|
| 147 |
+
yield history
|
| 148 |
return
|
| 149 |
|
| 150 |
+
def process_artifact(history: List[List[str]]):
|
| 151 |
+
if not history or not history[-1][1]:
|
| 152 |
+
return ""
|
| 153 |
+
html_code = extract_html_code_block(history[-1][1])
|
| 154 |
+
return send_to_sandbox(html_code)
|
| 155 |
|
|
|
|
|
|
|
|
|
|
| 156 |
def clear_chat():
|
| 157 |
return [], "", ""
|
| 158 |
|
| 159 |
+
# Gradio UI
|
| 160 |
+
css = """
|
|
|
|
|
|
|
| 161 |
.left_header {
|
| 162 |
+
display: flex;
|
| 163 |
+
flex-direction: column;
|
| 164 |
+
justify-content: center;
|
| 165 |
+
align-items: center;
|
| 166 |
}
|
| 167 |
.right_panel {
|
| 168 |
+
margin-top: 16px;
|
| 169 |
+
border: 1px solid #BFBFC4;
|
| 170 |
+
border-radius: 8px;
|
| 171 |
+
overflow: hidden;
|
| 172 |
}
|
| 173 |
.render_header {
|
| 174 |
+
height: 30px;
|
| 175 |
+
width: 100%;
|
| 176 |
+
padding: 5px 16px;
|
| 177 |
+
background-color: #f5f5f5;
|
| 178 |
}
|
| 179 |
.header_btn {
|
| 180 |
+
display: inline-block;
|
| 181 |
+
height: 10px;
|
| 182 |
+
width: 10px;
|
| 183 |
+
border-radius: 50%;
|
| 184 |
+
margin-right: 4px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
}
|
| 186 |
+
.render_header > .header_btn:nth-child(1) { background-color: #f5222d; }
|
| 187 |
+
.render_header > .header_btn:nth-child(2) { background-color: #faad14; }
|
| 188 |
+
.render_header > .header_btn:nth-child(3) { background-color: #52c41a; }
|
| 189 |
.right_content {
|
| 190 |
+
height: 920px;
|
| 191 |
+
display: flex;
|
| 192 |
+
flex-direction: column;
|
| 193 |
+
justify-content: center;
|
| 194 |
+
align-items: center;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
}
|
| 196 |
+
.html_content { width: 100%; height: 920px; }
|
| 197 |
"""
|
| 198 |
|
| 199 |
+
svg_logo = """
|
| 200 |
<svg width="40" height="40" viewBox="0 0 45 45" fill="none" xmlns="http://www.w3.org/2000/svg">
|
| 201 |
+
<circle cx="22.5" cy="22.5" r="22.5" fill="#5572F9"/>
|
| 202 |
+
<path d="M22.5 11.25L26.25 16.875H18.75L22.5 11.25Z" fill="white"/>
|
| 203 |
+
<path d="M22.5 33.75L26.25 28.125H18.75L22.5 33.75Z" fill="white"/>
|
| 204 |
+
<path d="M28.125 22.5L22.5 28.125L16.875 22.5L22.5 16.875L28.125 22.5Z" fill="white"/>
|
| 205 |
</svg>
|
| 206 |
"""
|
| 207 |
|
| 208 |
+
with gr.Blocks(title=model_name.split('/')[-1], css=css) as demo:
|
| 209 |
gr.HTML(f"""
|
| 210 |
<div class="left_header" style="margin-bottom: 20px;">
|
| 211 |
+
{svg_logo}
|
| 212 |
<h1>{model_name.split('/')[-1]} - Chat + Artifacts</h1>
|
| 213 |
<p>(Two-phase chain-of-thought with artifact extraction)</p>
|
| 214 |
</div>
|
|
|
|
| 230 |
with gr.Row():
|
| 231 |
submit_btn = gr.Button("Send", variant="primary")
|
| 232 |
clear_btn = gr.Button("Clear", variant="secondary")
|
| 233 |
+
|
| 234 |
with gr.Column(scale=6):
|
| 235 |
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
|
| 236 |
artifact_html = gr.HTML(
|
|
|
|
| 238 |
elem_classes="html_content"
|
| 239 |
)
|
| 240 |
|
| 241 |
+
# Event handlers
|
| 242 |
+
text_input.submit(
|
| 243 |
+
fn=chat_stream,
|
| 244 |
+
inputs=[chatbot, text_input],
|
| 245 |
+
outputs=chatbot
|
| 246 |
+
).then(
|
| 247 |
+
fn=lambda: "",
|
| 248 |
+
outputs=text_input
|
| 249 |
).then(
|
| 250 |
+
fn=process_artifact,
|
| 251 |
+
inputs=[chatbot],
|
| 252 |
+
outputs=artifact_html
|
| 253 |
)
|
| 254 |
|
| 255 |
+
submit_btn.click(
|
| 256 |
+
fn=chat_stream,
|
| 257 |
+
inputs=[chatbot, text_input],
|
| 258 |
+
outputs=chatbot
|
| 259 |
+
).then(
|
| 260 |
+
fn=lambda: "",
|
| 261 |
+
outputs=text_input
|
| 262 |
).then(
|
| 263 |
+
fn=process_artifact,
|
| 264 |
+
inputs=[chatbot],
|
| 265 |
+
outputs=artifact_html
|
| 266 |
)
|
| 267 |
|
| 268 |
clear_btn.click(
|
| 269 |
+
fn=clear_chat,
|
| 270 |
outputs=[chatbot, text_input, artifact_html]
|
| 271 |
)
|
| 272 |
|
| 273 |
+
if __name__ == "__main__":
|
| 274 |
+
logger.info("Launching Gradio demo...")
|
| 275 |
+
demo.queue(concurrency_limit=1).launch(server_name="0.0.0.0", share=True)
|