Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,57 @@
|
|
| 1 |
import subprocess
|
| 2 |
-
subprocess.run(
|
| 3 |
-
'pip install flash-attn==2.7.0.post2 --no-build-isolation',
|
| 4 |
-
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
| 5 |
-
shell=True
|
| 6 |
-
)
|
| 7 |
-
subprocess.run(
|
| 8 |
-
'pip install transformers',
|
| 9 |
-
shell=True
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
import spaces
|
| 13 |
import os
|
| 14 |
import re
|
| 15 |
import logging
|
|
|
|
| 16 |
from typing import List
|
| 17 |
from threading import Thread
|
| 18 |
-
import base64
|
| 19 |
|
| 20 |
import torch
|
| 21 |
import gradio as gr
|
| 22 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# ----------------------------------------------------------------------
|
| 25 |
-
# 1. Setup
|
| 26 |
# ----------------------------------------------------------------------
|
| 27 |
-
model_name = 'smirki/UIGEN-T1.1-Qwen-7B' # Change as needed
|
| 28 |
-
use_thread = True # Generation happens in a background thread
|
| 29 |
-
|
| 30 |
logger = logging.getLogger(__name__)
|
| 31 |
-
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 32 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
logger.info("Loading model
|
| 35 |
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
model_name,
|
| 37 |
-
|
|
|
|
| 38 |
trust_remote_code=True
|
| 39 |
-
)
|
| 40 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
logger.info("Model and tokenizer loaded successfully.")
|
| 42 |
|
| 43 |
# ----------------------------------------------------------------------
|
| 44 |
-
#
|
| 45 |
# ----------------------------------------------------------------------
|
| 46 |
s1_inference_prompt_think_only = """<|im_start|>user
|
| 47 |
{question}<|im_end|>
|
|
@@ -49,29 +59,27 @@ s1_inference_prompt_think_only = """<|im_start|>user
|
|
| 49 |
<|im_start|>think
|
| 50 |
"""
|
| 51 |
|
| 52 |
-
# ----------------------------------------------------------------------
|
| 53 |
-
# 3. Generation Parameter Setup
|
| 54 |
-
# ----------------------------------------------------------------------
|
| 55 |
THINK_MAX_NEW_TOKENS = 12000
|
| 56 |
ANSWER_MAX_NEW_TOKENS = 12000
|
| 57 |
|
| 58 |
def initialize_gen_kwargs():
|
|
|
|
| 59 |
return {
|
| 60 |
-
"max_new_tokens": 1024, #
|
| 61 |
"do_sample": True,
|
| 62 |
"temperature": 0.7,
|
| 63 |
"top_p": 0.9,
|
| 64 |
"repetition_penalty": 1.05,
|
| 65 |
-
# "eos_token_id": model.generation_config.eos_token_id, # Removed to avoid premature stopping
|
| 66 |
"pad_token_id": tokenizer.pad_token_id,
|
| 67 |
"use_cache": True,
|
| 68 |
-
"streamer": None #
|
| 69 |
}
|
| 70 |
|
| 71 |
# ----------------------------------------------------------------------
|
| 72 |
# 4. Helper to submit chat
|
| 73 |
# ----------------------------------------------------------------------
|
| 74 |
def submit_chat(chatbot, text_input):
|
|
|
|
| 75 |
if not text_input.strip():
|
| 76 |
return chatbot, ""
|
| 77 |
response = ""
|
|
@@ -83,6 +91,10 @@ def submit_chat(chatbot, text_input):
|
|
| 83 |
# 5. Artifacts Handling
|
| 84 |
# ----------------------------------------------------------------------
|
| 85 |
def extract_html_code_block(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
pattern = r'```html\s*(.*?)\s*```'
|
| 87 |
match = re.search(pattern, text, re.DOTALL)
|
| 88 |
if match:
|
|
@@ -93,6 +105,10 @@ def extract_html_code_block(text: str) -> str:
|
|
| 93 |
return text.strip()
|
| 94 |
|
| 95 |
def send_to_sandbox(html_code: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
encoded_html = base64.b64encode(html_code.encode('utf-8')).decode('utf-8')
|
| 97 |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
|
| 98 |
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
|
|
@@ -100,18 +116,27 @@ def send_to_sandbox(html_code: str) -> str:
|
|
| 100 |
# ----------------------------------------------------------------------
|
| 101 |
# 6. The Two-Phase Streaming Inference
|
| 102 |
# ----------------------------------------------------------------------
|
| 103 |
-
@spaces.GPU
|
| 104 |
def ovis_chat(chatbot: List[List[str]]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
logger.info("Starting two-phase generation...")
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
formatted_think_prompt = s1_inference_prompt_think_only.format(question=last_query)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt")
|
| 112 |
-
attention_mask_think = torch.ne(input_ids_think, tokenizer.pad_token_id)
|
|
|
|
|
|
|
| 113 |
think_inputs = {"input_ids": input_ids_think, "attention_mask": attention_mask_think}
|
| 114 |
-
|
|
|
|
| 115 |
gen_kwargs_think = initialize_gen_kwargs()
|
| 116 |
gen_kwargs_think["max_new_tokens"] = THINK_MAX_NEW_TOKENS
|
| 117 |
think_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
@@ -120,27 +145,30 @@ def ovis_chat(chatbot: List[List[str]]):
|
|
| 120 |
full_think = ""
|
| 121 |
try:
|
| 122 |
with torch.inference_mode():
|
| 123 |
-
logger.info("Starting think phase generation thread...")
|
| 124 |
thread_think = Thread(target=lambda: model.generate(**think_inputs, **gen_kwargs_think))
|
| 125 |
thread_think.start()
|
|
|
|
| 126 |
for new_text in think_streamer:
|
| 127 |
full_think += new_text
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
| 129 |
display_text = f"<|im_start|>think\n{full_think.strip()}"
|
| 130 |
chatbot[-1][1] = display_text
|
| 131 |
yield chatbot, ""
|
| 132 |
thread_think.join()
|
| 133 |
-
logger.info("Think phase completed.")
|
| 134 |
except Exception as e:
|
| 135 |
logger.error("Error during think phase: " + str(e))
|
| 136 |
yield chatbot, f"Error in think phase: {str(e)}"
|
| 137 |
return
|
|
|
|
| 138 |
|
| 139 |
-
# Phase 2: "answer"
|
| 140 |
new_prompt = formatted_think_prompt + full_think.strip() + "\n<|im_start|>answer\n"
|
| 141 |
-
|
| 142 |
-
input_ids_answer = tokenizer.encode(new_prompt, return_tensors="pt")
|
| 143 |
-
attention_mask_answer = torch.ne(input_ids_answer, tokenizer.pad_token_id)
|
| 144 |
answer_inputs = {"input_ids": input_ids_answer, "attention_mask": attention_mask_answer}
|
| 145 |
|
| 146 |
gen_kwargs_answer = initialize_gen_kwargs()
|
|
@@ -151,12 +179,12 @@ def ovis_chat(chatbot: List[List[str]]):
|
|
| 151 |
full_answer = ""
|
| 152 |
try:
|
| 153 |
with torch.inference_mode():
|
| 154 |
-
logger.info("Starting answer phase generation thread...")
|
| 155 |
thread_answer = Thread(target=lambda: model.generate(**answer_inputs, **gen_kwargs_answer))
|
| 156 |
thread_answer.start()
|
| 157 |
for new_text in answer_streamer:
|
| 158 |
full_answer += new_text
|
| 159 |
-
logger.
|
|
|
|
| 160 |
display_text = (
|
| 161 |
f"<|im_start|>think\n{full_think.strip()}\n\n"
|
| 162 |
f"<|im_start|>answer\n{full_answer.strip()}"
|
|
@@ -164,13 +192,16 @@ def ovis_chat(chatbot: List[List[str]]):
|
|
| 164 |
chatbot[-1][1] = display_text
|
| 165 |
yield chatbot, ""
|
| 166 |
thread_answer.join()
|
| 167 |
-
logger.info("Answer phase completed.")
|
| 168 |
except Exception as e:
|
| 169 |
logger.error("Error during answer phase: " + str(e))
|
| 170 |
yield chatbot, f"Error in answer phase: {str(e)}"
|
| 171 |
return
|
|
|
|
| 172 |
|
|
|
|
| 173 |
log_conversation(chatbot)
|
|
|
|
|
|
|
| 174 |
html_code = extract_html_code_block(full_answer)
|
| 175 |
sandbox_iframe = send_to_sandbox(html_code)
|
| 176 |
yield chatbot, sandbox_iframe
|
|
@@ -197,21 +228,18 @@ css_code = """
|
|
| 197 |
justify-content: center;
|
| 198 |
align-items: center;
|
| 199 |
}
|
| 200 |
-
|
| 201 |
.right_panel {
|
| 202 |
margin-top: 16px;
|
| 203 |
border: 1px solid #BFBFC4;
|
| 204 |
border-radius: 8px;
|
| 205 |
overflow: hidden;
|
| 206 |
}
|
| 207 |
-
|
| 208 |
.render_header {
|
| 209 |
height: 30px;
|
| 210 |
width: 100%;
|
| 211 |
padding: 5px 16px;
|
| 212 |
background-color: #f5f5f5;
|
| 213 |
}
|
| 214 |
-
|
| 215 |
.header_btn {
|
| 216 |
display: inline-block;
|
| 217 |
height: 10px;
|
|
@@ -219,18 +247,15 @@ css_code = """
|
|
| 219 |
border-radius: 50%;
|
| 220 |
margin-right: 4px;
|
| 221 |
}
|
| 222 |
-
|
| 223 |
.render_header > .header_btn:nth-child(1) {
|
| 224 |
background-color: #f5222d;
|
| 225 |
}
|
| 226 |
-
|
| 227 |
.render_header > .header_btn:nth-child(2) {
|
| 228 |
background-color: #faad14;
|
| 229 |
}
|
| 230 |
.render_header > .header_btn:nth-child(3) {
|
| 231 |
background-color: #52c41a;
|
| 232 |
}
|
| 233 |
-
|
| 234 |
.right_content {
|
| 235 |
height: 920px;
|
| 236 |
display: flex;
|
|
@@ -238,7 +263,6 @@ css_code = """
|
|
| 238 |
justify-content: center;
|
| 239 |
align-items: center;
|
| 240 |
}
|
| 241 |
-
|
| 242 |
.html_content {
|
| 243 |
width: 100%;
|
| 244 |
height: 920px;
|
|
@@ -265,11 +289,7 @@ with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
|
| 265 |
|
| 266 |
with gr.Row():
|
| 267 |
with gr.Column(scale=4):
|
| 268 |
-
chatbot = gr.Chatbot(
|
| 269 |
-
label="Chat",
|
| 270 |
-
height=520,
|
| 271 |
-
show_copy_button=True
|
| 272 |
-
)
|
| 273 |
with gr.Row():
|
| 274 |
text_input = gr.Textbox(
|
| 275 |
label="Prompt",
|
|
@@ -280,11 +300,12 @@ with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
|
| 280 |
submit_btn = gr.Button("Send", variant="primary")
|
| 281 |
clear_btn = gr.Button("Clear", variant="secondary")
|
| 282 |
with gr.Column(scale=6):
|
| 283 |
-
gr.HTML(
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
)
|
|
|
|
| 288 |
|
| 289 |
submit_btn.click(
|
| 290 |
submit_chat, [chatbot, text_input], [chatbot, text_input]
|
|
@@ -303,5 +324,5 @@ with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
|
| 303 |
outputs=[chatbot, text_input, artifact_html]
|
| 304 |
)
|
| 305 |
|
| 306 |
-
logger.info("Launching
|
| 307 |
-
demo.queue(
|
|
|
|
| 1 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
import logging
|
| 5 |
+
import base64
|
| 6 |
from typing import List
|
| 7 |
from threading import Thread
|
|
|
|
| 8 |
|
| 9 |
import torch
|
| 10 |
import gradio as gr
|
| 11 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 12 |
|
| 13 |
+
# Install packages (if needed). Adjust or remove if your environment already has them.
|
| 14 |
+
subprocess.run(
|
| 15 |
+
["pip", "install", "flash-attn==2.7.0.post2", "--no-build-isolation"]
|
| 16 |
+
)
|
| 17 |
+
subprocess.run(["pip", "install", "transformers"])
|
| 18 |
+
|
| 19 |
+
# Optional: set up CUDA-specific environment vars if you need them
|
| 20 |
+
# os.environ["FLASH_ATTENTION_SKIP_CUDA_BUILD"] = "TRUE"
|
| 21 |
+
|
| 22 |
# ----------------------------------------------------------------------
|
| 23 |
+
# 1. Setup Logging
|
| 24 |
# ----------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
| 25 |
logger = logging.getLogger(__name__)
|
|
|
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
| 27 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 28 |
+
|
| 29 |
+
# ----------------------------------------------------------------------
|
| 30 |
+
# 2. Model & Tokenizer Initialization
|
| 31 |
+
# ----------------------------------------------------------------------
|
| 32 |
+
model_name = "smirki/UIGEN-T1.1-Qwen-7B" # adjust as needed
|
| 33 |
|
| 34 |
+
logger.info("Loading model & tokenizer...")
|
| 35 |
model = AutoModelForCausalLM.from_pretrained(
|
| 36 |
model_name,
|
| 37 |
+
device_map="auto", # auto-shard across available GPU(s)
|
| 38 |
+
torch_dtype=torch.bfloat16, # or torch.float16, depending on your hardware
|
| 39 |
trust_remote_code=True
|
| 40 |
+
)
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 42 |
+
|
| 43 |
+
# Optional speed-up via torch.compile (requires PyTorch ≥ 2.0).
|
| 44 |
+
# Comment out if you run into any compatibility issues.
|
| 45 |
+
try:
|
| 46 |
+
model = torch.compile(model)
|
| 47 |
+
logger.info("Model compiled with torch.compile for potential speed-up.")
|
| 48 |
+
except Exception as e:
|
| 49 |
+
logger.warning(f"Could not compile model: {e}")
|
| 50 |
+
|
| 51 |
logger.info("Model and tokenizer loaded successfully.")
|
| 52 |
|
| 53 |
# ----------------------------------------------------------------------
|
| 54 |
+
# 3. Two-Phase Prompt Templates
|
| 55 |
# ----------------------------------------------------------------------
|
| 56 |
s1_inference_prompt_think_only = """<|im_start|>user
|
| 57 |
{question}<|im_end|>
|
|
|
|
| 59 |
<|im_start|>think
|
| 60 |
"""
|
| 61 |
|
|
|
|
|
|
|
|
|
|
| 62 |
THINK_MAX_NEW_TOKENS = 12000
|
| 63 |
ANSWER_MAX_NEW_TOKENS = 12000
|
| 64 |
|
| 65 |
def initialize_gen_kwargs():
|
| 66 |
+
"""Common generation parameters for both phases; tweak as necessary."""
|
| 67 |
return {
|
| 68 |
+
"max_new_tokens": 1024, # will be updated for each phase
|
| 69 |
"do_sample": True,
|
| 70 |
"temperature": 0.7,
|
| 71 |
"top_p": 0.9,
|
| 72 |
"repetition_penalty": 1.05,
|
|
|
|
| 73 |
"pad_token_id": tokenizer.pad_token_id,
|
| 74 |
"use_cache": True,
|
| 75 |
+
"streamer": None # will be replaced with TextIteratorStreamer
|
| 76 |
}
|
| 77 |
|
| 78 |
# ----------------------------------------------------------------------
|
| 79 |
# 4. Helper to submit chat
|
| 80 |
# ----------------------------------------------------------------------
|
| 81 |
def submit_chat(chatbot, text_input):
|
| 82 |
+
"""Adds the user query to the Chatbot list, clearing the textbox."""
|
| 83 |
if not text_input.strip():
|
| 84 |
return chatbot, ""
|
| 85 |
response = ""
|
|
|
|
| 91 |
# 5. Artifacts Handling
|
| 92 |
# ----------------------------------------------------------------------
|
| 93 |
def extract_html_code_block(text: str) -> str:
|
| 94 |
+
"""
|
| 95 |
+
Extracts the first ```html ... ``` block from the model's answer.
|
| 96 |
+
If none found, returns the entire text stripped.
|
| 97 |
+
"""
|
| 98 |
pattern = r'```html\s*(.*?)\s*```'
|
| 99 |
match = re.search(pattern, text, re.DOTALL)
|
| 100 |
if match:
|
|
|
|
| 105 |
return text.strip()
|
| 106 |
|
| 107 |
def send_to_sandbox(html_code: str) -> str:
|
| 108 |
+
"""
|
| 109 |
+
Converts HTML code into a base64-encoded Data URI embedded in an iframe,
|
| 110 |
+
which can be displayed in Gradio’s HTML component.
|
| 111 |
+
"""
|
| 112 |
encoded_html = base64.b64encode(html_code.encode('utf-8')).decode('utf-8')
|
| 113 |
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
|
| 114 |
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
|
|
|
|
| 116 |
# ----------------------------------------------------------------------
|
| 117 |
# 6. The Two-Phase Streaming Inference
|
| 118 |
# ----------------------------------------------------------------------
|
|
|
|
| 119 |
def ovis_chat(chatbot: List[List[str]]):
|
| 120 |
+
"""
|
| 121 |
+
Main two-phase pipeline:
|
| 122 |
+
1) "Think" phase (hidden chain-of-thought)
|
| 123 |
+
2) "Answer" phase
|
| 124 |
+
Yields intermediate partial results for real-time streaming in Gradio.
|
| 125 |
+
"""
|
| 126 |
logger.info("Starting two-phase generation...")
|
| 127 |
+
|
| 128 |
+
# -- Phase 1: "think" --
|
| 129 |
+
last_query = chatbot[-1][0] # latest user query
|
| 130 |
formatted_think_prompt = s1_inference_prompt_think_only.format(question=last_query)
|
| 131 |
+
|
| 132 |
+
# Prepare input
|
| 133 |
+
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt")
|
| 134 |
+
attention_mask_think = torch.ne(input_ids_think, tokenizer.pad_token_id)
|
| 135 |
+
# Move to correct device automatically if using device_map="auto"
|
| 136 |
+
# or if single GPU, you can do e.g. input_ids_think = input_ids_think.cuda()
|
| 137 |
think_inputs = {"input_ids": input_ids_think, "attention_mask": attention_mask_think}
|
| 138 |
+
|
| 139 |
+
# Generation params
|
| 140 |
gen_kwargs_think = initialize_gen_kwargs()
|
| 141 |
gen_kwargs_think["max_new_tokens"] = THINK_MAX_NEW_TOKENS
|
| 142 |
think_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
| 145 |
full_think = ""
|
| 146 |
try:
|
| 147 |
with torch.inference_mode():
|
|
|
|
| 148 |
thread_think = Thread(target=lambda: model.generate(**think_inputs, **gen_kwargs_think))
|
| 149 |
thread_think.start()
|
| 150 |
+
# Stream partial tokens as they arrive
|
| 151 |
for new_text in think_streamer:
|
| 152 |
full_think += new_text
|
| 153 |
+
# If you don’t need every single token logged, skip or reduce:
|
| 154 |
+
# logger.debug(f"Think token: {new_text.strip()}")
|
| 155 |
+
|
| 156 |
+
# Show partial chain-of-thought in the Chatbot’s assistant window
|
| 157 |
display_text = f"<|im_start|>think\n{full_think.strip()}"
|
| 158 |
chatbot[-1][1] = display_text
|
| 159 |
yield chatbot, ""
|
| 160 |
thread_think.join()
|
|
|
|
| 161 |
except Exception as e:
|
| 162 |
logger.error("Error during think phase: " + str(e))
|
| 163 |
yield chatbot, f"Error in think phase: {str(e)}"
|
| 164 |
return
|
| 165 |
+
logger.info("Think phase completed.")
|
| 166 |
|
| 167 |
+
# -- Phase 2: "answer" --
|
| 168 |
new_prompt = formatted_think_prompt + full_think.strip() + "\n<|im_start|>answer\n"
|
| 169 |
+
|
| 170 |
+
input_ids_answer = tokenizer.encode(new_prompt, return_tensors="pt")
|
| 171 |
+
attention_mask_answer = torch.ne(input_ids_answer, tokenizer.pad_token_id)
|
| 172 |
answer_inputs = {"input_ids": input_ids_answer, "attention_mask": attention_mask_answer}
|
| 173 |
|
| 174 |
gen_kwargs_answer = initialize_gen_kwargs()
|
|
|
|
| 179 |
full_answer = ""
|
| 180 |
try:
|
| 181 |
with torch.inference_mode():
|
|
|
|
| 182 |
thread_answer = Thread(target=lambda: model.generate(**answer_inputs, **gen_kwargs_answer))
|
| 183 |
thread_answer.start()
|
| 184 |
for new_text in answer_streamer:
|
| 185 |
full_answer += new_text
|
| 186 |
+
# logger.debug(f"Answer token: {new_text.strip()}")
|
| 187 |
+
|
| 188 |
display_text = (
|
| 189 |
f"<|im_start|>think\n{full_think.strip()}\n\n"
|
| 190 |
f"<|im_start|>answer\n{full_answer.strip()}"
|
|
|
|
| 192 |
chatbot[-1][1] = display_text
|
| 193 |
yield chatbot, ""
|
| 194 |
thread_answer.join()
|
|
|
|
| 195 |
except Exception as e:
|
| 196 |
logger.error("Error during answer phase: " + str(e))
|
| 197 |
yield chatbot, f"Error in answer phase: {str(e)}"
|
| 198 |
return
|
| 199 |
+
logger.info("Answer phase completed.")
|
| 200 |
|
| 201 |
+
# Logging the final conversation
|
| 202 |
log_conversation(chatbot)
|
| 203 |
+
|
| 204 |
+
# Extract HTML code if any & display
|
| 205 |
html_code = extract_html_code_block(full_answer)
|
| 206 |
sandbox_iframe = send_to_sandbox(html_code)
|
| 207 |
yield chatbot, sandbox_iframe
|
|
|
|
| 228 |
justify-content: center;
|
| 229 |
align-items: center;
|
| 230 |
}
|
|
|
|
| 231 |
.right_panel {
|
| 232 |
margin-top: 16px;
|
| 233 |
border: 1px solid #BFBFC4;
|
| 234 |
border-radius: 8px;
|
| 235 |
overflow: hidden;
|
| 236 |
}
|
|
|
|
| 237 |
.render_header {
|
| 238 |
height: 30px;
|
| 239 |
width: 100%;
|
| 240 |
padding: 5px 16px;
|
| 241 |
background-color: #f5f5f5;
|
| 242 |
}
|
|
|
|
| 243 |
.header_btn {
|
| 244 |
display: inline-block;
|
| 245 |
height: 10px;
|
|
|
|
| 247 |
border-radius: 50%;
|
| 248 |
margin-right: 4px;
|
| 249 |
}
|
|
|
|
| 250 |
.render_header > .header_btn:nth-child(1) {
|
| 251 |
background-color: #f5222d;
|
| 252 |
}
|
|
|
|
| 253 |
.render_header > .header_btn:nth-child(2) {
|
| 254 |
background-color: #faad14;
|
| 255 |
}
|
| 256 |
.render_header > .header_btn:nth-child(3) {
|
| 257 |
background-color: #52c41a;
|
| 258 |
}
|
|
|
|
| 259 |
.right_content {
|
| 260 |
height: 920px;
|
| 261 |
display: flex;
|
|
|
|
| 263 |
justify-content: center;
|
| 264 |
align-items: center;
|
| 265 |
}
|
|
|
|
| 266 |
.html_content {
|
| 267 |
width: 100%;
|
| 268 |
height: 920px;
|
|
|
|
| 289 |
|
| 290 |
with gr.Row():
|
| 291 |
with gr.Column(scale=4):
|
| 292 |
+
chatbot = gr.Chatbot(label="Chat", height=520, show_copy_button=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
with gr.Row():
|
| 294 |
text_input = gr.Textbox(
|
| 295 |
label="Prompt",
|
|
|
|
| 300 |
submit_btn = gr.Button("Send", variant="primary")
|
| 301 |
clear_btn = gr.Button("Clear", variant="secondary")
|
| 302 |
with gr.Column(scale=6):
|
| 303 |
+
gr.HTML(
|
| 304 |
+
'<div class="render_header">'
|
| 305 |
+
'<span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span>'
|
| 306 |
+
'</div>'
|
| 307 |
)
|
| 308 |
+
artifact_html = gr.HTML(value="", elem_classes="html_content")
|
| 309 |
|
| 310 |
submit_btn.click(
|
| 311 |
submit_chat, [chatbot, text_input], [chatbot, text_input]
|
|
|
|
| 324 |
outputs=[chatbot, text_input, artifact_html]
|
| 325 |
)
|
| 326 |
|
| 327 |
+
logger.info("Launching Gradio app. Please wait...")
|
| 328 |
+
demo.queue(concurrency_count=10).launch(server_name="0.0.0.0", share=True)
|