Spaces:
Runtime error
Runtime error
smhavens
commited on
Commit
·
01959cc
1
Parent(s):
ec3e101
Please work
Browse files
app.py
CHANGED
|
@@ -83,29 +83,6 @@ def training():
|
|
| 83 |
train_data = dataset["train"]
|
| 84 |
# For agility we only 1/2 of our available data
|
| 85 |
n_examples = dataset["train"].num_rows // 2
|
| 86 |
-
# n_remaining = dataset["train"].num_rows - n_examples
|
| 87 |
-
# dataset_clean = {}
|
| 88 |
-
# # dataset_0 = []
|
| 89 |
-
# # dataset_1 = []
|
| 90 |
-
# # dataset_2 = []
|
| 91 |
-
# # dataset_3 = []
|
| 92 |
-
# for i in range(n_examples):
|
| 93 |
-
# dataset_clean[i] = {}
|
| 94 |
-
# dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True)
|
| 95 |
-
# dataset_clean[i]["label"] = train_data[i]["label"]
|
| 96 |
-
# if train_data[i]["label"] == 0:
|
| 97 |
-
# dataset_0.append(dataset_clean[i])
|
| 98 |
-
# elif train_data[i]["label"] == 1:
|
| 99 |
-
# dataset_1.append(dataset_clean[i])
|
| 100 |
-
# elif train_data[i]["label"] == 2:
|
| 101 |
-
# dataset_2.append(dataset_clean[i])
|
| 102 |
-
# elif train_data[i]["label"] == 3:
|
| 103 |
-
# dataset_3.append(dataset_clean[i])
|
| 104 |
-
# n_0 = len(dataset_0) // 2
|
| 105 |
-
# n_1 = len(dataset_1) // 2
|
| 106 |
-
# n_2 = len(dataset_2) // 2
|
| 107 |
-
# n_3 = len(dataset_3) // 2
|
| 108 |
-
# print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3))
|
| 109 |
|
| 110 |
for i in range(n_examples):
|
| 111 |
example = train_data[i]
|
|
@@ -113,30 +90,6 @@ def training():
|
|
| 113 |
# print(example["text"])
|
| 114 |
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
| 115 |
|
| 116 |
-
# for i in range(n_0):
|
| 117 |
-
# example = dataset_0[i]
|
| 118 |
-
# # example_opposite = dataset_0[-(i)]
|
| 119 |
-
# # print(example["text"])
|
| 120 |
-
# train_examples.append(InputExample(texts=[example['text']], label=0))
|
| 121 |
-
|
| 122 |
-
# for i in range(n_1):
|
| 123 |
-
# example = dataset_1[i]
|
| 124 |
-
# # example_opposite = dataset_1[-(i)]
|
| 125 |
-
# # print(example["text"])
|
| 126 |
-
# train_examples.append(InputExample(texts=[example['text']], label=1))
|
| 127 |
-
|
| 128 |
-
# for i in range(n_2):
|
| 129 |
-
# example = dataset_2[i]
|
| 130 |
-
# # example_opposite = dataset_2[-(i)]
|
| 131 |
-
# # print(example["text"])
|
| 132 |
-
# train_examples.append(InputExample(texts=[example['text']], label=2))
|
| 133 |
-
|
| 134 |
-
# for i in range(n_3):
|
| 135 |
-
# example = dataset_3[i]
|
| 136 |
-
# # example_opposite = dataset_3[-(i)]
|
| 137 |
-
# # print(example["text"])
|
| 138 |
-
# train_examples.append(InputExample(texts=[example['text']], label=3))
|
| 139 |
-
|
| 140 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
| 141 |
|
| 142 |
print("END DATALOADER")
|
|
|
|
| 83 |
train_data = dataset["train"]
|
| 84 |
# For agility we only 1/2 of our available data
|
| 85 |
n_examples = dataset["train"].num_rows // 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
for i in range(n_examples):
|
| 88 |
example = train_data[i]
|
|
|
|
| 90 |
# print(example["text"])
|
| 91 |
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
| 94 |
|
| 95 |
print("END DATALOADER")
|
train.py
CHANGED
|
@@ -92,59 +92,13 @@ def training():
|
|
| 92 |
train_data = dataset["train"]
|
| 93 |
# For agility we only 1/2 of our available data
|
| 94 |
n_examples = dataset["train"].num_rows // 2
|
| 95 |
-
# n_remaining = dataset["train"].num_rows - n_examples
|
| 96 |
-
# dataset_clean = {}
|
| 97 |
-
# # dataset_0 = []
|
| 98 |
-
# # dataset_1 = []
|
| 99 |
-
# # dataset_2 = []
|
| 100 |
-
# # dataset_3 = []
|
| 101 |
-
# for i in range(n_examples):
|
| 102 |
-
# dataset_clean[i] = {}
|
| 103 |
-
# dataset_clean[i]["text"] = normalize(train_data[i]["text"], lowercase=True, remove_stopwords=True)
|
| 104 |
-
# dataset_clean[i]["label"] = train_data[i]["label"]
|
| 105 |
-
# if train_data[i]["label"] == 0:
|
| 106 |
-
# dataset_0.append(dataset_clean[i])
|
| 107 |
-
# elif train_data[i]["label"] == 1:
|
| 108 |
-
# dataset_1.append(dataset_clean[i])
|
| 109 |
-
# elif train_data[i]["label"] == 2:
|
| 110 |
-
# dataset_2.append(dataset_clean[i])
|
| 111 |
-
# elif train_data[i]["label"] == 3:
|
| 112 |
-
# dataset_3.append(dataset_clean[i])
|
| 113 |
-
# n_0 = len(dataset_0) // 2
|
| 114 |
-
# n_1 = len(dataset_1) // 2
|
| 115 |
-
# n_2 = len(dataset_2) // 2
|
| 116 |
-
# n_3 = len(dataset_3) // 2
|
| 117 |
-
# print("Label lengths:", len(dataset_0), len(dataset_1), len(dataset_2), len(dataset_3))
|
| 118 |
|
| 119 |
for i in range(n_examples):
|
| 120 |
example = train_data[i]
|
| 121 |
# example_opposite = dataset_clean[-(i)]
|
| 122 |
# print(example["text"])
|
| 123 |
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
| 124 |
-
|
| 125 |
-
# for i in range(n_0):
|
| 126 |
-
# example = dataset_0[i]
|
| 127 |
-
# # example_opposite = dataset_0[-(i)]
|
| 128 |
-
# # print(example["text"])
|
| 129 |
-
# train_examples.append(InputExample(texts=[example['text']], label=0))
|
| 130 |
-
|
| 131 |
-
# for i in range(n_1):
|
| 132 |
-
# example = dataset_1[i]
|
| 133 |
-
# # example_opposite = dataset_1[-(i)]
|
| 134 |
-
# # print(example["text"])
|
| 135 |
-
# train_examples.append(InputExample(texts=[example['text']], label=1))
|
| 136 |
-
|
| 137 |
-
# for i in range(n_2):
|
| 138 |
-
# example = dataset_2[i]
|
| 139 |
-
# # example_opposite = dataset_2[-(i)]
|
| 140 |
-
# # print(example["text"])
|
| 141 |
-
# train_examples.append(InputExample(texts=[example['text']], label=2))
|
| 142 |
-
|
| 143 |
-
# for i in range(n_3):
|
| 144 |
-
# example = dataset_3[i]
|
| 145 |
-
# # example_opposite = dataset_3[-(i)]
|
| 146 |
-
# # print(example["text"])
|
| 147 |
-
# train_examples.append(InputExample(texts=[example['text']], label=3))
|
| 148 |
|
| 149 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
| 150 |
|
|
|
|
| 92 |
train_data = dataset["train"]
|
| 93 |
# For agility we only 1/2 of our available data
|
| 94 |
n_examples = dataset["train"].num_rows // 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
for i in range(n_examples):
|
| 97 |
example = train_data[i]
|
| 98 |
# example_opposite = dataset_clean[-(i)]
|
| 99 |
# print(example["text"])
|
| 100 |
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
| 101 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
| 104 |
|