Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import math | |
| import spacy | |
| from datasets import load_dataset | |
| from sentence_transformers import SentenceTransformer | |
| from sentence_transformers import InputExample | |
| from sentence_transformers import losses | |
| from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification | |
| from transformers import TrainingArguments, Trainer | |
| import torch | |
| import torch.nn.functional as F | |
| from torch.utils.data import DataLoader | |
| import numpy as np | |
| import evaluate | |
| import nltk | |
| from nltk.corpus import stopwords | |
| import subprocess | |
| import sys | |
| from transformers import DataCollatorWithPadding | |
| from transformers import TrainingArguments | |
| from transformers import ( | |
| BertModel, | |
| BertTokenizerFast, | |
| Trainer, | |
| EvalPrediction | |
| ) | |
| # !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl | |
| # subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl']) | |
| # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') | |
| # data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
| # nltk.download('stopwords') | |
| # nlp = spacy.load("en_core_web_sm") | |
| # stops = stopwords.words("english") | |
| # answer = "Pizza" | |
| guesses = [] | |
| answer = "Pizza" | |
| tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased') | |
| metric = evaluate.load("accuracy") | |
| def tokenize_function(examples): | |
| return tokenizer(examples["stem"], padding="max_length", truncation=True) | |
| #Mean Pooling - Take attention mask into account for correct averaging | |
| def mean_pooling(model_output, attention_mask): | |
| token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
| input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
| return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
| def compute_metrics(eval_pred): | |
| logits, labels = eval_pred | |
| predictions = np.argmax(logits, axis=-1) | |
| metric = evaluate.load("accuracy") | |
| return metric.compute(predictions=predictions, references=labels) | |
| # def training(): | |
| # dataset_id = "relbert/analogy_questions" | |
| # dataset_sub = "bats" | |
| # print("GETTING DATASET") | |
| # raw_dataset = load_dataset(dataset_id, dataset_sub) | |
| # # data_metric = evaluate.load(dataset_id, dataset_sub) | |
| # checkpoint = "bert-base-uncased" | |
| # model = BertModel.from_pretrained(checkpoint) | |
| # # dataset = dataset["train"] | |
| # # tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # # print(raw_dataset) | |
| # test_data = raw_dataset["test"] | |
| # # print(test_data["stem"]) | |
| # all_answers = [] | |
| # for answer in raw_dataset["answer"]: | |
| # answer = raw_dataset["choice"][answer] | |
| # raw_dataset = raw_dataset.add_column("label", all_answers) | |
| # print(raw_dataset) | |
| # print(raw_dataset["label"]) | |
| # dataset = raw_dataset.map( | |
| # lambda x: tokenizer(x["stem"], truncation=True), | |
| # batched=True, | |
| # ) | |
| # print(dataset) | |
| # dataset = dataset.remove_columns(["stem", "answer", "choice"]) | |
| # dataset = dataset.rename_column("label", "labels") | |
| # dataset = dataset.with_format("torch") | |
| # training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch") | |
| # print(dataset) | |
| # # print(f"- The {dataset_id} dataset has {dataset.num_rows} examples.") | |
| # # print(f"- Each example is a {type(dataset[0])} with a {type(dataset[0]['stem'])} as value.") | |
| # # print(f"- Examples look like this: {dataset[0]}") | |
| # # small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) | |
| # # small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) | |
| # # dataset = dataset["train"].map(tokenize_function, batched=True) | |
| # # dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"]) | |
| # # dataset.format['type'] | |
| # # tokenized_news = dataset.map(tokenize_function, batched=True) | |
| # # model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/all-MiniLM-L6-v2", num_labels=2) | |
| # # print(dataset) | |
| # # Choose the appropriate device based on availability (CUDA or CPU) | |
| # # gpu_available = torch.cuda.is_available() | |
| # # device = torch.device("cuda" if gpu_available else "cpu") | |
| # # model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') | |
| # # tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| # # print(tokenized_datasets) | |
| # # # small_train_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) | |
| # # # small_eval_dataset = tokenized_datasets["validation"].shuffle(seed=42).select(range(1000)) | |
| # # model = model.to(device) | |
| # # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) | |
| # # training_args = TrainingArguments(output_dir="test_trainer") | |
| # trainer = Trainer( | |
| # model=model, | |
| # args=training_args, | |
| # train_dataset=dataset["test"], | |
| # eval_dataset=dataset["validation"], | |
| # compute_metrics=compute_metrics, | |
| # ) | |
| # output = trainer.train() | |
| # # train_examples = [] | |
| # # train_data = dataset["train"] | |
| # # # For agility we only 1/2 of our available data | |
| # # n_examples = dataset["train"].num_rows // 2 | |
| # # for i in range(n_examples): | |
| # # example = train_data[i] | |
| # # # example_opposite = dataset_clean[-(i)] | |
| # # # print(example["text"]) | |
| # # train_examples.append(InputExample(texts=[example['stem'], example])) | |
| # # train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25) | |
| # # print("END DATALOADER") | |
| # # # print(train_examples) | |
| # # embeddings = finetune(train_dataloader) | |
| # print(output) | |
| # model.save("bert-analogies") | |
| # model.save_to_hub("smhavens/bert-base-analogies") | |
| # return output | |
| # def finetune(train_dataloader): | |
| # # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) | |
| # model_id = "sentence-transformers/all-MiniLM-L6-v2" | |
| # model = SentenceTransformer(model_id) | |
| # device = torch.device('cuda:0') | |
| # model = model.to(device) | |
| # # training_args = TrainingArguments(output_dir="test_trainer") | |
| # # USE THIS LINK | |
| # # https://huggingface.co/blog/how-to-train-sentence-transformers | |
| # train_loss = losses.BatchHardSoftMarginTripletLoss(model=model) | |
| # print("BEGIN FIT") | |
| # model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10) | |
| # model.save("bert-analogies") | |
| # model.save_to_hub("smhavens/bert-base-analogies") | |
| # return 0 | |
| def training(): | |
| dataset_id = "relbert/analogy_questions" | |
| dataset_sub = "bats" | |
| print("GETTING DATASET") | |
| dataset = load_dataset(dataset_id, dataset_sub) | |
| # dataset = dataset["train"] | |
| # tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
| print(f"- The {dataset_id} dataset has {dataset['test'].num_rows} examples.") | |
| print(f"- Each example is a {type(dataset['test'][0])} with a {type(dataset['test'][0]['stem'])} as value.") | |
| print(f"- Examples look like this: {dataset['test'][0]}") | |
| train_examples = [] | |
| train_data = dataset["test"] | |
| # For agility we only 1/2 of our available data | |
| n_examples = dataset["test"].num_rows // 2 | |
| for i in range(n_examples): | |
| example = train_data[i] | |
| temp_word_1 = example["stem"][0] | |
| temp_word_2 = example["stem"][1] | |
| temp_word_3 = example["choice"][example["answer"]][0] | |
| temp_word_4 = example["choice"][example["answer"]][1] | |
| comp1 = f"{temp_word_1} to {temp_word_2}" | |
| comp2 = f"{temp_word_3} to {temp_word_4}" | |
| # example_opposite = dataset_clean[-(i)] | |
| # print(example["text"]) | |
| train_examples.append(InputExample(texts=[comp1, comp2])) | |
| train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25) | |
| print("END DATALOADER") | |
| # print(train_examples) | |
| embeddings = finetune(train_dataloader) | |
| return (dataset['test'].num_rows, type(dataset['test'][0]), type(dataset['test'][0]['stem']), dataset['test'][0], embeddings) | |
| def finetune(train_dataloader): | |
| # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) | |
| model_id = "sentence-transformers/all-MiniLM-L6-v2" | |
| model = SentenceTransformer(model_id) | |
| device = torch.device('cuda:0') | |
| model = model.to(device) | |
| # training_args = TrainingArguments(output_dir="test_trainer") | |
| # USE THIS LINK | |
| # https://huggingface.co/blog/how-to-train-sentence-transformers | |
| train_loss = losses.MegaBatchMarginLoss(model=model) | |
| print("BEGIN FIT") | |
| model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10) | |
| model.save("bert-analogies") | |
| # model.save_to_hub("smhavens/bert-base-analogies") | |
| # accuracy = compute_metrics(eval, metric) | |
| return 0 | |
| def greet(name): | |
| return "Hello " + name + "!!" | |
| def check_answer(guess:str): | |
| global guesses | |
| global answer | |
| guesses.append(guess) | |
| output = "" | |
| for guess in guesses: | |
| output += ("- " + guess + "\n") | |
| output = output[:-1] | |
| if guess.lower() == answer.lower(): | |
| return "Correct!", output | |
| else: | |
| return "Try again!", output | |
| def main(): | |
| print("BEGIN") | |
| word1 = "Black" | |
| word2 = "White" | |
| word3 = "Sun" | |
| global answer | |
| answer = "Moon" | |
| global guesses | |
| num_rows, data_type, value, example, embeddings = training() | |
| # prompt = f"{word1} is to {word2} as {word3} is to ____" | |
| # with gr.Blocks() as iface: | |
| # gr.Markdown(prompt) | |
| # with gr.Tab("Guess"): | |
| # text_input = gr.Textbox() | |
| # text_output = gr.Textbox() | |
| # text_button = gr.Button("Submit") | |
| # with gr.Accordion("Open for previous guesses"): | |
| # text_guesses = gr.Textbox() | |
| # with gr.Tab("Testing"): | |
| # gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}. | |
| # An example is {example}. | |
| # The Embeddings are {embeddings}.""") | |
| # text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses]) | |
| # # iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| # iface.launch() | |
| if __name__ == "__main__": | |
| main() |