Spaces:
Runtime error
Runtime error
Finalize HF demo
Browse filesSigned-off-by: smajumdar <[email protected]>
app.py
CHANGED
|
@@ -4,23 +4,37 @@ import uuid
|
|
| 4 |
import tempfile
|
| 5 |
import subprocess
|
| 6 |
import re
|
|
|
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import pytube as pt
|
| 10 |
|
| 11 |
import nemo.collections.asr as nemo_asr
|
|
|
|
|
|
|
| 12 |
import speech_to_text_buffered_infer_ctc as buffered_ctc
|
| 13 |
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
|
|
|
|
| 14 |
|
| 15 |
# Set NeMo cache dir as /tmp
|
| 16 |
from nemo import constants
|
| 17 |
-
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo"
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
SAMPLE_RATE = 16000
|
| 21 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
| 22 |
DESCRIPTION = "Demo of all languages supported by NeMo ASR"
|
| 23 |
DEFAULT_EN_MODEL = "nvidia/stt_en_conformer_transducer_xlarge"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
MARKDOWN = f"""
|
| 26 |
# {TITLE}
|
|
@@ -32,6 +46,13 @@ CSS = """
|
|
| 32 |
p.big {
|
| 33 |
font-size: 20px;
|
| 34 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
"""
|
| 36 |
|
| 37 |
ARTICLE = """
|
|
@@ -58,6 +79,9 @@ for info in hf_infos:
|
|
| 58 |
|
| 59 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
| 60 |
|
|
|
|
|
|
|
|
|
|
| 61 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
| 62 |
|
| 63 |
SUPPORTED_LANG_MODEL_DICT = {}
|
|
@@ -77,6 +101,14 @@ for lang in SUPPORTED_LANG_MODEL_DICT.keys():
|
|
| 77 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
| 78 |
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
def parse_duration(audio_file):
|
| 81 |
"""
|
| 82 |
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
|
|
@@ -108,7 +140,7 @@ def resolve_model_type(model_name: str) -> str:
|
|
| 108 |
return 'ctc'
|
| 109 |
|
| 110 |
# Model specific maps
|
| 111 |
-
|
| 112 |
return 'ctc'
|
| 113 |
elif 'quartznet' in model_name:
|
| 114 |
return 'ctc'
|
|
@@ -116,9 +148,8 @@ def resolve_model_type(model_name: str) -> str:
|
|
| 116 |
return 'ctc'
|
| 117 |
elif 'contextnet' in model_name:
|
| 118 |
return 'ctc'
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
return None
|
| 122 |
|
| 123 |
|
| 124 |
def resolve_model_stride(model_name) -> int:
|
|
@@ -185,6 +216,16 @@ def extract_result_from_manifest(filepath, model_name) -> (bool, str):
|
|
| 185 |
return False, f"Could not perform inference on model with name : {model_name}"
|
| 186 |
|
| 187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
def infer_audio(model_name: str, audio_file: str) -> str:
|
| 189 |
"""
|
| 190 |
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
|
|
@@ -195,17 +236,18 @@ def infer_audio(model_name: str, audio_file: str) -> str:
|
|
| 195 |
|
| 196 |
Returns:
|
| 197 |
str which is the transcription if successful.
|
|
|
|
| 198 |
"""
|
| 199 |
# Parse the duration of the audio file
|
| 200 |
duration = parse_duration(audio_file)
|
| 201 |
|
| 202 |
-
if duration >
|
| 203 |
# Process audio to be of wav type (possible youtube audio)
|
| 204 |
audio_file = convert_audio(audio_file)
|
| 205 |
|
| 206 |
# If audio file transcoding failed, let user know
|
| 207 |
if audio_file is None:
|
| 208 |
-
return "Failed to convert audio file to wav."
|
| 209 |
|
| 210 |
# Extract audio dir from resolved audio filepath
|
| 211 |
audio_dir = os.path.split(audio_file)[0]
|
|
@@ -214,7 +256,7 @@ def infer_audio(model_name: str, audio_file: str) -> str:
|
|
| 214 |
model_stride = resolve_model_stride(model_name)
|
| 215 |
|
| 216 |
if model_stride < 0:
|
| 217 |
-
return f"Failed to compute the model stride for model with name : {model_name}"
|
| 218 |
|
| 219 |
# Process model type (CTC/RNNT/Hybrid)
|
| 220 |
model_type = resolve_model_type(model_name)
|
|
@@ -266,7 +308,7 @@ def infer_audio(model_name: str, audio_file: str) -> str:
|
|
| 266 |
pass
|
| 267 |
|
| 268 |
if RESULT is None:
|
| 269 |
-
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
| 270 |
|
| 271 |
elif model_type == 'ctc':
|
| 272 |
|
|
@@ -303,9 +345,10 @@ def infer_audio(model_name: str, audio_file: str) -> str:
|
|
| 303 |
return extract_result_from_manifest('output.json', model_name)[-1]
|
| 304 |
|
| 305 |
else:
|
| 306 |
-
return f"Could not parse model type; failed to perform inference with model {model_name}!"
|
| 307 |
|
| 308 |
else:
|
|
|
|
| 309 |
if model_name in model_dict:
|
| 310 |
model = model_dict[model_name]
|
| 311 |
else:
|
|
@@ -317,7 +360,7 @@ def infer_audio(model_name: str, audio_file: str) -> str:
|
|
| 317 |
return transcriptions
|
| 318 |
else:
|
| 319 |
error = (
|
| 320 |
-
f"Could not find model {model_name} in list of available models : "
|
| 321 |
f"{list([k for k in model_dict.keys()])}"
|
| 322 |
)
|
| 323 |
return error
|
|
@@ -334,30 +377,60 @@ def transcribe(microphone, audio_file, model_name):
|
|
| 334 |
audio_data = microphone
|
| 335 |
|
| 336 |
elif (microphone is None) and (audio_file is None):
|
| 337 |
-
|
| 338 |
|
| 339 |
elif microphone is not None:
|
| 340 |
audio_data = microphone
|
| 341 |
else:
|
| 342 |
audio_data = audio_file
|
| 343 |
|
|
|
|
| 344 |
try:
|
| 345 |
# Use HF API for transcription
|
|
|
|
| 346 |
transcriptions = infer_audio(model_name, audio_data)
|
|
|
|
|
|
|
| 347 |
|
| 348 |
except Exception as e:
|
| 349 |
transcriptions = ""
|
| 350 |
-
warn_output = warn_output
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
warn_output += (
|
| 352 |
f"The model `{model_name}` is currently loading and cannot be used "
|
| 353 |
-
f"for transcription
|
| 354 |
f"Please try another model or wait a few minutes."
|
| 355 |
)
|
| 356 |
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
|
| 360 |
def _return_yt_html_embed(yt_url):
|
|
|
|
| 361 |
video_id = yt_url.split("?v=")[-1]
|
| 362 |
HTML_str = (
|
| 363 |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
|
@@ -367,6 +440,7 @@ def _return_yt_html_embed(yt_url):
|
|
| 367 |
|
| 368 |
|
| 369 |
def yt_transcribe(yt_url, model_name):
|
|
|
|
| 370 |
yt = pt.YouTube(yt_url)
|
| 371 |
html_embed_str = _return_yt_html_embed(yt_url)
|
| 372 |
|
|
@@ -374,15 +448,57 @@ def yt_transcribe(yt_url, model_name):
|
|
| 374 |
file_uuid = str(uuid.uuid4().hex)
|
| 375 |
file_uuid = f"{tempdir}/{file_uuid}.mp3"
|
| 376 |
|
|
|
|
|
|
|
|
|
|
| 377 |
stream = yt.streams.filter(only_audio=True)[0]
|
| 378 |
stream.download(filename=file_uuid)
|
| 379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
text = infer_audio(model_name, file_uuid)
|
| 381 |
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
|
| 385 |
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
lang_selector = gr.components.Dropdown(
|
| 387 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
| 388 |
)
|
|
@@ -406,6 +522,9 @@ def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
|
|
| 406 |
return lang_selector, models_in_lang
|
| 407 |
|
| 408 |
|
|
|
|
|
|
|
|
|
|
| 409 |
demo = gr.Blocks(title=TITLE, css=CSS)
|
| 410 |
|
| 411 |
with demo:
|
|
@@ -419,9 +538,12 @@ with demo:
|
|
| 419 |
lang_selector, models_in_lang = create_lang_selector_component()
|
| 420 |
|
| 421 |
transcript = gr.components.Label(label='Transcript')
|
|
|
|
| 422 |
|
| 423 |
run = gr.components.Button('Transcribe')
|
| 424 |
-
run.click(
|
|
|
|
|
|
|
| 425 |
|
| 426 |
with gr.Tab("Transcribe Youtube"):
|
| 427 |
yt_url = gr.components.Textbox(
|
|
@@ -429,14 +551,19 @@ with demo:
|
|
| 429 |
)
|
| 430 |
|
| 431 |
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
|
| 432 |
-
default_en_model=
|
| 433 |
)
|
| 434 |
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
| 436 |
transcript = gr.components.Label(label='Transcript')
|
|
|
|
| 437 |
|
| 438 |
-
run
|
| 439 |
-
|
|
|
|
| 440 |
|
| 441 |
gr.components.HTML(ARTICLE)
|
| 442 |
|
|
|
|
| 4 |
import tempfile
|
| 5 |
import subprocess
|
| 6 |
import re
|
| 7 |
+
import time
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import pytube as pt
|
| 11 |
|
| 12 |
import nemo.collections.asr as nemo_asr
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
import speech_to_text_buffered_infer_ctc as buffered_ctc
|
| 16 |
import speech_to_text_buffered_infer_rnnt as buffered_rnnt
|
| 17 |
+
from nemo.utils import logging
|
| 18 |
|
| 19 |
# Set NeMo cache dir as /tmp
|
| 20 |
from nemo import constants
|
|
|
|
| 21 |
|
| 22 |
+
os.environ[constants.NEMO_ENV_CACHE_DIR] = "/tmp/nemo/"
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
SAMPLE_RATE = 16000 # Default sample rate for ASR
|
| 26 |
+
BUFFERED_INFERENCE_DURATION_THRESHOLD = 60.0 # 60 second and above will require chunked inference.
|
| 27 |
|
|
|
|
| 28 |
TITLE = "NeMo ASR Inference on Hugging Face"
|
| 29 |
DESCRIPTION = "Demo of all languages supported by NeMo ASR"
|
| 30 |
DEFAULT_EN_MODEL = "nvidia/stt_en_conformer_transducer_xlarge"
|
| 31 |
+
DEFAULT_BUFFERED_EN_MODEL = "nvidia/stt_en_conformer_transducer_large"
|
| 32 |
+
|
| 33 |
+
# Pre-download and cache the model in disk space
|
| 34 |
+
logging.setLevel(logging.ERROR)
|
| 35 |
+
tmp_model = nemo_asr.models.ASRModel.from_pretrained(DEFAULT_BUFFERED_EN_MODEL, map_location='cpu')
|
| 36 |
+
del tmp_model
|
| 37 |
+
logging.setLevel(logging.INFO)
|
| 38 |
|
| 39 |
MARKDOWN = f"""
|
| 40 |
# {TITLE}
|
|
|
|
| 46 |
p.big {
|
| 47 |
font-size: 20px;
|
| 48 |
}
|
| 49 |
+
|
| 50 |
+
/* From https://huggingface.co/spaces/k2-fsa/automatic-speech-recognition/blob/main/app.py */
|
| 51 |
+
|
| 52 |
+
.result {display:flex;flex-direction:column}
|
| 53 |
+
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%;font-size:20px;}
|
| 54 |
+
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
|
| 55 |
+
.result_item_error {background-color:#ff7070;color:white;align-self:start}
|
| 56 |
"""
|
| 57 |
|
| 58 |
ARTICLE = """
|
|
|
|
| 79 |
|
| 80 |
SUPPORTED_MODEL_NAMES = sorted(list(SUPPORTED_MODEL_NAMES))
|
| 81 |
|
| 82 |
+
# DEBUG FILTER
|
| 83 |
+
SUPPORTED_MODEL_NAMES = list(filter(lambda x: "en" in x and "conformer_transducer_large" in x, SUPPORTED_MODEL_NAMES))
|
| 84 |
+
|
| 85 |
model_dict = {model_name: gr.Interface.load(f'models/{model_name}') for model_name in SUPPORTED_MODEL_NAMES}
|
| 86 |
|
| 87 |
SUPPORTED_LANG_MODEL_DICT = {}
|
|
|
|
| 101 |
SUPPORTED_LANG_MODEL_DICT[lang] = model_ids
|
| 102 |
|
| 103 |
|
| 104 |
+
def get_device():
|
| 105 |
+
gpu_available = torch.cuda.is_available()
|
| 106 |
+
if gpu_available:
|
| 107 |
+
return torch.cuda.get_device_name()
|
| 108 |
+
else:
|
| 109 |
+
return "CPU"
|
| 110 |
+
|
| 111 |
+
|
| 112 |
def parse_duration(audio_file):
|
| 113 |
"""
|
| 114 |
FFMPEG to calculate durations. Libraries can do it too, but filetypes cause different libraries to behave differently.
|
|
|
|
| 140 |
return 'ctc'
|
| 141 |
|
| 142 |
# Model specific maps
|
| 143 |
+
if 'jasper' in model_name:
|
| 144 |
return 'ctc'
|
| 145 |
elif 'quartznet' in model_name:
|
| 146 |
return 'ctc'
|
|
|
|
| 148 |
return 'ctc'
|
| 149 |
elif 'contextnet' in model_name:
|
| 150 |
return 'ctc'
|
| 151 |
+
|
| 152 |
+
return None
|
|
|
|
| 153 |
|
| 154 |
|
| 155 |
def resolve_model_stride(model_name) -> int:
|
|
|
|
| 216 |
return False, f"Could not perform inference on model with name : {model_name}"
|
| 217 |
|
| 218 |
|
| 219 |
+
def build_html_output(s: str, style: str = "result_item_success"):
|
| 220 |
+
return f"""
|
| 221 |
+
<div class='result'>
|
| 222 |
+
<div class='result_item {style}'>
|
| 223 |
+
{s}
|
| 224 |
+
</div>
|
| 225 |
+
</div>
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
|
| 229 |
def infer_audio(model_name: str, audio_file: str) -> str:
|
| 230 |
"""
|
| 231 |
Main method that switches from HF inference for small audio files to Buffered CTC/RNNT mode for long audio files.
|
|
|
|
| 236 |
|
| 237 |
Returns:
|
| 238 |
str which is the transcription if successful.
|
| 239 |
+
str which is HTML output of logs.
|
| 240 |
"""
|
| 241 |
# Parse the duration of the audio file
|
| 242 |
duration = parse_duration(audio_file)
|
| 243 |
|
| 244 |
+
if duration > BUFFERED_INFERENCE_DURATION_THRESHOLD: # Longer than one minute; use buffered mode
|
| 245 |
# Process audio to be of wav type (possible youtube audio)
|
| 246 |
audio_file = convert_audio(audio_file)
|
| 247 |
|
| 248 |
# If audio file transcoding failed, let user know
|
| 249 |
if audio_file is None:
|
| 250 |
+
return "Error:- Failed to convert audio file to wav."
|
| 251 |
|
| 252 |
# Extract audio dir from resolved audio filepath
|
| 253 |
audio_dir = os.path.split(audio_file)[0]
|
|
|
|
| 256 |
model_stride = resolve_model_stride(model_name)
|
| 257 |
|
| 258 |
if model_stride < 0:
|
| 259 |
+
return f"Error:- Failed to compute the model stride for model with name : {model_name}"
|
| 260 |
|
| 261 |
# Process model type (CTC/RNNT/Hybrid)
|
| 262 |
model_type = resolve_model_type(model_name)
|
|
|
|
| 308 |
pass
|
| 309 |
|
| 310 |
if RESULT is None:
|
| 311 |
+
return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"
|
| 312 |
|
| 313 |
elif model_type == 'ctc':
|
| 314 |
|
|
|
|
| 345 |
return extract_result_from_manifest('output.json', model_name)[-1]
|
| 346 |
|
| 347 |
else:
|
| 348 |
+
return f"Error:- Could not parse model type; failed to perform inference with model {model_name}!"
|
| 349 |
|
| 350 |
else:
|
| 351 |
+
# Obtain Gradio Model function from cache of models
|
| 352 |
if model_name in model_dict:
|
| 353 |
model = model_dict[model_name]
|
| 354 |
else:
|
|
|
|
| 360 |
return transcriptions
|
| 361 |
else:
|
| 362 |
error = (
|
| 363 |
+
f"Error:- Could not find model {model_name} in list of available models : "
|
| 364 |
f"{list([k for k in model_dict.keys()])}"
|
| 365 |
)
|
| 366 |
return error
|
|
|
|
| 377 |
audio_data = microphone
|
| 378 |
|
| 379 |
elif (microphone is None) and (audio_file is None):
|
| 380 |
+
warn_output = "ERROR: You have to either use the microphone or upload an audio file"
|
| 381 |
|
| 382 |
elif microphone is not None:
|
| 383 |
audio_data = microphone
|
| 384 |
else:
|
| 385 |
audio_data = audio_file
|
| 386 |
|
| 387 |
+
time_diff = None
|
| 388 |
try:
|
| 389 |
# Use HF API for transcription
|
| 390 |
+
start = time.time()
|
| 391 |
transcriptions = infer_audio(model_name, audio_data)
|
| 392 |
+
end = time.time()
|
| 393 |
+
time_diff = end - start
|
| 394 |
|
| 395 |
except Exception as e:
|
| 396 |
transcriptions = ""
|
| 397 |
+
warn_output = warn_output
|
| 398 |
+
|
| 399 |
+
if warn_output != "":
|
| 400 |
+
warn_output += "<br><br>"
|
| 401 |
+
|
| 402 |
warn_output += (
|
| 403 |
f"The model `{model_name}` is currently loading and cannot be used "
|
| 404 |
+
f"for transcription.<br>"
|
| 405 |
f"Please try another model or wait a few minutes."
|
| 406 |
)
|
| 407 |
|
| 408 |
+
# Built HTML output
|
| 409 |
+
if warn_output != "":
|
| 410 |
+
html_output = build_html_output(warn_output, style="result_item_error")
|
| 411 |
+
else:
|
| 412 |
+
if transcriptions.startswith("Error:-"):
|
| 413 |
+
html_output = build_html_output(transcriptions, style="result_item_error")
|
| 414 |
+
else:
|
| 415 |
+
audio_duration = parse_duration(audio_data)
|
| 416 |
+
|
| 417 |
+
output = f"Successfully transcribed on {get_device()} ! <br>" f"Transcription Time : {time_diff: 0.3f} s"
|
| 418 |
+
|
| 419 |
+
if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
|
| 420 |
+
output += f""" <br><br>
|
| 421 |
+
Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
|
| 422 |
+
buffered inference was used. <br>
|
| 423 |
+
|
| 424 |
+
Please rerun again in order to measure the time taken for just inference with pre-downloaded model. <br>
|
| 425 |
+
"""
|
| 426 |
+
|
| 427 |
+
html_output = build_html_output(output)
|
| 428 |
+
|
| 429 |
+
return transcriptions, html_output
|
| 430 |
|
| 431 |
|
| 432 |
def _return_yt_html_embed(yt_url):
|
| 433 |
+
""" Obtained from https://huggingface.co/spaces/whisper-event/whisper-demo """
|
| 434 |
video_id = yt_url.split("?v=")[-1]
|
| 435 |
HTML_str = (
|
| 436 |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
|
|
|
| 440 |
|
| 441 |
|
| 442 |
def yt_transcribe(yt_url, model_name):
|
| 443 |
+
""" Modified from https://huggingface.co/spaces/whisper-event/whisper-demo """
|
| 444 |
yt = pt.YouTube(yt_url)
|
| 445 |
html_embed_str = _return_yt_html_embed(yt_url)
|
| 446 |
|
|
|
|
| 448 |
file_uuid = str(uuid.uuid4().hex)
|
| 449 |
file_uuid = f"{tempdir}/{file_uuid}.mp3"
|
| 450 |
|
| 451 |
+
# Download YT Audio temporarily
|
| 452 |
+
download_time_start = time.time()
|
| 453 |
+
|
| 454 |
stream = yt.streams.filter(only_audio=True)[0]
|
| 455 |
stream.download(filename=file_uuid)
|
| 456 |
|
| 457 |
+
download_time_end = time.time()
|
| 458 |
+
|
| 459 |
+
# Get audio duration
|
| 460 |
+
audio_duration = parse_duration(file_uuid)
|
| 461 |
+
|
| 462 |
+
# Perform transcription
|
| 463 |
+
infer_time_start = time.time()
|
| 464 |
+
|
| 465 |
text = infer_audio(model_name, file_uuid)
|
| 466 |
|
| 467 |
+
infer_time_end = time.time()
|
| 468 |
+
|
| 469 |
+
if text.startswith("Error:-"):
|
| 470 |
+
html_output = build_html_output(text, style='result_item_error')
|
| 471 |
+
else:
|
| 472 |
+
html_output = f"""
|
| 473 |
+
Successfully transcribed on {get_device()} ! <br>
|
| 474 |
+
Audio Download Time : {download_time_end - download_time_start: 0.3f} s <br>
|
| 475 |
+
Transcription Time : {infer_time_end - infer_time_start: 0.3f} s <br>
|
| 476 |
+
"""
|
| 477 |
+
|
| 478 |
+
if audio_duration > BUFFERED_INFERENCE_DURATION_THRESHOLD:
|
| 479 |
+
html_output += f""" <br>
|
| 480 |
+
Note: Audio duration was {audio_duration: 0.3f} s, so model had to be downloaded, initialized, and then
|
| 481 |
+
buffered inference was used. <br>
|
| 482 |
+
|
| 483 |
+
Please rerun again in order to measure the time taken for just inference with pre-downloaded model. <br>
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
html_output = build_html_output(html_output)
|
| 487 |
+
|
| 488 |
+
return text, html_embed_str, html_output
|
| 489 |
|
| 490 |
|
| 491 |
def create_lang_selector_component(default_en_model=DEFAULT_EN_MODEL):
|
| 492 |
+
"""
|
| 493 |
+
Utility function to select a langauge from a dropdown menu, and simultanously update another dropdown
|
| 494 |
+
containing the corresponding model checkpoints for that language.
|
| 495 |
+
|
| 496 |
+
Args:
|
| 497 |
+
default_en_model: str name of a default english model that should be the set default.
|
| 498 |
+
|
| 499 |
+
Returns:
|
| 500 |
+
Gradio components for lang_selector (Dropdown menu) and models_in_lang (Dropdown menu)
|
| 501 |
+
"""
|
| 502 |
lang_selector = gr.components.Dropdown(
|
| 503 |
choices=sorted(list(SUPPORTED_LANGUAGES)), value="en", type="value", label="Languages", interactive=True,
|
| 504 |
)
|
|
|
|
| 522 |
return lang_selector, models_in_lang
|
| 523 |
|
| 524 |
|
| 525 |
+
"""
|
| 526 |
+
Define the GUI
|
| 527 |
+
"""
|
| 528 |
demo = gr.Blocks(title=TITLE, css=CSS)
|
| 529 |
|
| 530 |
with demo:
|
|
|
|
| 538 |
lang_selector, models_in_lang = create_lang_selector_component()
|
| 539 |
|
| 540 |
transcript = gr.components.Label(label='Transcript')
|
| 541 |
+
audio_html_output = gr.components.HTML()
|
| 542 |
|
| 543 |
run = gr.components.Button('Transcribe')
|
| 544 |
+
run.click(
|
| 545 |
+
transcribe, inputs=[microphone, file_upload, models_in_lang], outputs=[transcript, audio_html_output]
|
| 546 |
+
)
|
| 547 |
|
| 548 |
with gr.Tab("Transcribe Youtube"):
|
| 549 |
yt_url = gr.components.Textbox(
|
|
|
|
| 551 |
)
|
| 552 |
|
| 553 |
lang_selector_yt, models_in_lang_yt = create_lang_selector_component(
|
| 554 |
+
default_en_model=DEFAULT_BUFFERED_EN_MODEL
|
| 555 |
)
|
| 556 |
|
| 557 |
+
with gr.Row():
|
| 558 |
+
run = gr.components.Button('Transcribe YouTube')
|
| 559 |
+
embedded_video = gr.components.HTML()
|
| 560 |
+
|
| 561 |
transcript = gr.components.Label(label='Transcript')
|
| 562 |
+
yt_html_output = gr.components.HTML()
|
| 563 |
|
| 564 |
+
run.click(
|
| 565 |
+
yt_transcribe, inputs=[yt_url, models_in_lang_yt], outputs=[transcript, embedded_video, yt_html_output]
|
| 566 |
+
)
|
| 567 |
|
| 568 |
gr.components.HTML(ARTICLE)
|
| 569 |
|