File size: 11,746 Bytes
bd1548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c6fd2
bd1548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c6fd2
bd1548b
f877b6a
bd1548b
f877b6a
bd1548b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""Gradio demo Space for Trainingless – see plan.md for details."""

from __future__ import annotations

import base64
import io
import os
import time
import uuid
from datetime import datetime
from typing import Tuple, Optional

import requests
from dotenv import load_dotenv
from PIL import Image

import gradio as gr
from supabase import create_client, Client

# -----------------------------------------------------------------------------
# Environment & Supabase setup
# -----------------------------------------------------------------------------

# Load .env file *once* when running locally. The HF Spaces runtime injects the
# same names via its Secrets mechanism, so calling load_dotenv() is harmless.
load_dotenv()

SUPABASE_URL: str = os.getenv("SUPABASE_URL", "")
# Use a *secret* (server-only) key so the backend bypasses RLS.
SUPABASE_SECRET_KEY: str = os.getenv("SUPABASE_SECRET_KEY", "")
# (Optional) You can override which Edge Function gets called.
SUPABASE_FUNCTION_URL: str = os.getenv(
    "SUPABASE_FUNCTION_URL", f"{SUPABASE_URL}/functions/v1/process-image"
)
# Storage bucket for uploads. Must be *public*.
UPLOAD_BUCKET = os.getenv("SUPABASE_UPLOAD_BUCKET", "images")

REQUEST_TIMEOUT = int(os.getenv("SUPABASE_FN_TIMEOUT", "240"))  # seconds

# Available model workflows recognised by edge function
WORKFLOW_CHOICES = [
    "eyewear",
    "footwear",
    "dress",
]

if not SUPABASE_URL or not SUPABASE_SECRET_KEY:
    raise RuntimeError(
        "SUPABASE_URL and SUPABASE_SECRET_KEY must be set in the environment."
    )

# -----------------------------------------------------------------------------
# Supabase client – server-side: authenticate with secret key (bypasses RLS)
# -----------------------------------------------------------------------------

supabase: Client = create_client(SUPABASE_URL, SUPABASE_SECRET_KEY)

# Ensure the uploads bucket exists (idempotent). This requires service role *once*;
try:
    buckets = supabase.storage.list_buckets()  # type: ignore[attr-defined]
    bucket_names = {b["name"] for b in buckets} if isinstance(buckets, list) else set()
    if UPLOAD_BUCKET not in bucket_names:
        # Attempt to create bucket (will fail w/ anon key – inform user to create)
        try:
            supabase.storage.create_bucket(
                UPLOAD_BUCKET,
                public=True,
            )
            print(f"[startup] Created bucket '{UPLOAD_BUCKET}'.")
        except Exception as create_exc:  # noqa: BLE001
            print(f"[startup] Could not create bucket '{UPLOAD_BUCKET}': {create_exc!r}")
except Exception as exc:  # noqa: BLE001
    # Non-fatal. The bucket probably already exists or we don't have perms.
    print(f"[startup] Bucket check/create raised {exc!r}. Continuing…")


# -----------------------------------------------------------------------------
# Helper functions
# -----------------------------------------------------------------------------

def pil_to_bytes(img: Image.Image) -> bytes:
    """Convert PIL Image to PNG bytes."""
    with io.BytesIO() as buffer:
        img.save(buffer, format="PNG")
        return buffer.getvalue()


def upload_image_to_supabase(img: Image.Image, path: str) -> str:
    """Upload image under `UPLOAD_BUCKET/path` and return **public URL**."""
    data = pil_to_bytes(img)
    # Overwrite if exists
    supabase.storage.from_(UPLOAD_BUCKET).upload(
        path,
        data,
        {"content-type": "image/png", "upsert": "true"},  # upsert must be string
    )  # type: ignore[attr-defined]
    public_url = (
        f"{SUPABASE_URL}/storage/v1/object/public/{UPLOAD_BUCKET}/{path}"
    )
    return public_url


def wait_for_job_completion(job_id: str, timeout_s: int = 600) -> Optional[str]:
    """Subscribe to the single row via Realtime. Fallback to polling every 5 s."""

    # First try realtime subscription (non-blocking). If it errors, fall back.
    completed_image: Optional[str] = None
    did_subscribe = False

    try:
        # Docs: https://supabase.com/docs/reference/python/creating-channels
        channel = (
            supabase.channel("job_channel")
            .on(
                "postgres_changes",
                {
                    "event": "UPDATE",
                    "schema": "public",
                    "table": "processing_jobs",
                    "filter": f"id=eq.{job_id}",
                },
                lambda payload: _realtime_callback(payload, job_id),
            )
            .subscribe()
        )
        did_subscribe = True
    except Exception as exc:  # noqa: BLE001
        print(f"[wait] Realtime subscription failed – will poll: {exc!r}")

    start = time.time()
    while time.time() - start < timeout_s:
        if _RESULT_CACHE.get(job_id):
            completed_image = _RESULT_CACHE.pop(job_id)
            break
        if not did_subscribe or (time.time() - start) % 5 == 0:
            # Poll once every ~5 s
            data = (
                supabase.table("processing_jobs")
                .select("status,result_image_url")
                .eq("id", job_id)
                .single()
                .execute()
            )
            if data.data and data.data["status"] == "completed":
                completed_image = data.data.get("result_image_url")
                break
        time.sleep(1)

    try:
        if did_subscribe:
            supabase.remove_channel(channel)
    except Exception:  # noqa: PIE786, BLE001
        pass

    return completed_image


_RESULT_CACHE: dict[str, str] = {}


def _realtime_callback(payload: dict, job_id: str) -> None:
    new = payload.get("new", {})  # type: ignore[index]
    if new.get("status") == "completed":
        _RESULT_CACHE[job_id] = new.get("result_image_url")


MAX_PIXELS = 1_500_000  # 1.5 megapixels ceiling for each uploaded image


def downscale_image(img: Image.Image, max_pixels: int = MAX_PIXELS) -> Image.Image:
    """Downscale *img* proportionally so that width×height ≤ *max_pixels*.

    If the image is already small enough, it is returned unchanged.
    """
    w, h = img.size
    if w * h <= max_pixels:
        return img

    scale = (max_pixels / (w * h)) ** 0.5  # uniform scaling factor
    new_size = (max(1, int(w * scale)), max(1, int(h * scale)))
    return img.resize(new_size, Image.LANCZOS)


def _public_storage_url(path: str) -> str:
    """Return a public (https) URL given an object *path* inside any bucket.

    If *path* already looks like a full URL, it is returned unchanged.
    """
    if path.startswith("http://") or path.startswith("https://"):
        return path
    # Ensure no leading slash.
    return f"{SUPABASE_URL}/storage/v1/object/public/{path.lstrip('/')}"


# -----------------------------------------------------------------------------
# Main generate function
# -----------------------------------------------------------------------------

def generate(base_img: Image.Image, garment_img: Image.Image, workflow_choice: str) -> Image.Image:
    if base_img is None or garment_img is None:
        raise gr.Error("Please provide both images.")

    # 1. Persist both images to Supabase storage
    job_id = str(uuid.uuid4())
    folder = f"user_uploads/gradio/{job_id}"
    base_filename = f"{uuid.uuid4().hex}.png"
    garment_filename = f"{uuid.uuid4().hex}.png"
    base_path = f"{folder}/{base_filename}"
    garment_path = f"{folder}/{garment_filename}"

    base_img = downscale_image(base_img)
    garment_img = downscale_image(garment_img)

    base_url = upload_image_to_supabase(base_img, base_path)
    garment_url = upload_image_to_supabase(garment_img, garment_path)

    # 2. Insert new row into processing_jobs (anon key, relies on open RLS)
    token_for_row = str(uuid.uuid4())
    insert_payload = {
        "id": job_id,
        "status": "queued",
        "base_image_path": base_url,
        "garment_image_path": garment_url,
        "mask_image_path": base_url,
        "access_token": token_for_row,
        "created_at": datetime.utcnow().isoformat(),
    }
    supabase.table("processing_jobs").insert(insert_payload).execute()

    # 3. Trigger edge function
    workflow_choice = (workflow_choice or "eyewear").lower()
    if workflow_choice not in WORKFLOW_CHOICES:
        workflow_choice = "eyewear"

    fn_payload = {
        "baseImageUrl": base_url,
        "garmentImageUrl": garment_url,
        # 👉 hack: use garment as placeholder mask until proper mask provided
        "maskImageUrl": garment_url,
        "jobId": job_id,
        "workflowType": workflow_choice,
    }
    headers = {
        "Content-Type": "application/json",
        "apikey": SUPABASE_SECRET_KEY,
        "Authorization": f"Bearer {SUPABASE_SECRET_KEY}",
    }

    resp = requests.post(
        SUPABASE_FUNCTION_URL,
        json=fn_payload,
        headers=headers,
        timeout=REQUEST_TIMEOUT,
    )
    if not resp.ok:
        raise gr.Error(f"Backend error: {resp.text}")

    # 4. Wait for completion via realtime (or polling fallback)
    result = wait_for_job_completion(job_id)
    if not result:
        raise gr.Error("Timed out waiting for job to finish.")

    # Result may be base64 data URI or http URL; normalise.
    if result.startswith("data:image"):
        header, b64 = result.split(",", 1)
        img_bytes = base64.b64decode(b64)
        result_img = Image.open(io.BytesIO(img_bytes)).convert("RGBA")
    else:
        result_url = _public_storage_url(result)
        resp_img = requests.get(result_url, timeout=30)
        resp_img.raise_for_status()
        result_img = Image.open(io.BytesIO(resp_img.content)).convert("RGBA")

    return result_img


# -----------------------------------------------------------------------------
# Gradio UI
# -----------------------------------------------------------------------------

description = "Upload a person photo (Base) and a product image. Select between Eyewear, Footwear, or Full-Body Garments to switch between the three available models. Click 👉 **Generate** to try on a product."  # noqa: E501

with gr.Blocks(title="YOURMIRROR.IO - SM4LL-VTON Demo") as demo:
    # Header
    gr.Markdown("# SM4LL-VTON PRE-RELEASE DEMO | YOURMIRROR.IO | Virtual Try-On")
    gr.Markdown(description)

    IMG_SIZE = 256

    with gr.Row():
        # Left column → inputs stacked vertically
        with gr.Column(scale=1):
            base_in = gr.Image(
                label="Base Image",
                type="pil",
                height=IMG_SIZE,
                width=IMG_SIZE,
            )
            garment_in = gr.Image(
                label="Product Image",
                type="pil",
                height=IMG_SIZE,
                width=IMG_SIZE,
            )

        # Centre column → result image (larger)
        with gr.Column(scale=2):
            result_out = gr.Image(
                label="Result",
                height=512,
                width=512,
            )

        # Right column → workflow selector and Generate button
        with gr.Column(scale=1, elem_classes="control-column"):
            workflow_selector = gr.Radio(
                choices=WORKFLOW_CHOICES,
                value="eyewear",
                label="Model",
            )
            generate_btn = gr.Button("Generate", variant="primary", size="lg")

    # Wire up interaction
    generate_btn.click(
        generate,
        inputs=[base_in, garment_in, workflow_selector],
        outputs=result_out,
    )

# Run app if executed directly (e.g. `python app.py`). HF Spaces launches via
# `python app.py` automatically if it finds `app.py` at repo root, but our file
# lives in a sub-folder, so we keep the guard.
if __name__ == "__main__":
    demo.launch()