File size: 11,006 Bytes
62cc23b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import torch
import torch.nn as nn
import numpy as np
from typing import Union, Tuple
from PIL import Image, ImageFilter
import cv2
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from huggingface_hub import hf_hub_download
import shutil
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Model configuration
AVAILABLE_MODELS = {
"segformer_b2_clothes": "1038lab/segformer_clothes"
}
# Model paths
current_dir = os.path.dirname(os.path.abspath(__file__))
models_dir = os.path.join(current_dir, "models")
def pil2tensor(image: Image.Image) -> torch.Tensor:
"""Convert PIL Image to tensor."""
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0)[None,]
def tensor2pil(image: torch.Tensor) -> Image.Image:
"""Convert tensor to PIL Image."""
return Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
def image2mask(image: Image.Image) -> torch.Tensor:
"""Convert image to mask tensor."""
if isinstance(image, Image.Image):
image = pil2tensor(image)
return image.squeeze()[..., 0]
def mask2image(mask: torch.Tensor) -> Image.Image:
"""Convert mask tensor to PIL Image."""
if len(mask.shape) == 2:
mask = mask.unsqueeze(0)
return tensor2pil(mask)
class ClothesSegmentation:
"""
Standalone clothing segmentation using Segformer model.
"""
def __init__(self):
self.processor = None
self.model = None
self.cache_dir = os.path.join(models_dir, "RMBG", "segformer_clothes")
# Class mapping for segmentation - consistent with latest repo
self.class_map = {
"Background": 0, "Hat": 1, "Hair": 2, "Sunglasses": 3,
"Upper-clothes": 4, "Skirt": 5, "Pants": 6, "Dress": 7,
"Belt": 8, "Left-shoe": 9, "Right-shoe": 10, "Face": 11,
"Left-leg": 12, "Right-leg": 13, "Left-arm": 14, "Right-arm": 15,
"Bag": 16, "Scarf": 17
}
def check_model_cache(self):
"""Check if model files exist in cache."""
if not os.path.exists(self.cache_dir):
return False, "Model directory not found"
required_files = [
'config.json',
'model.safetensors',
'preprocessor_config.json'
]
missing_files = [f for f in required_files if not os.path.exists(os.path.join(self.cache_dir, f))]
if missing_files:
return False, f"Required model files missing: {', '.join(missing_files)}"
return True, "Model cache verified"
def clear_model(self):
"""Clear model from memory - improved version."""
if self.model is not None:
self.model.cpu()
del self.model
self.model = None
self.processor = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
def download_model_files(self):
"""Download model files from Hugging Face - improved version."""
model_id = AVAILABLE_MODELS["segformer_b2_clothes"]
model_files = {
'config.json': 'config.json',
'model.safetensors': 'model.safetensors',
'preprocessor_config.json': 'preprocessor_config.json'
}
os.makedirs(self.cache_dir, exist_ok=True)
print(f"Downloading Clothes Segformer model files...")
try:
for save_name, repo_path in model_files.items():
print(f"Downloading {save_name}...")
downloaded_path = hf_hub_download(
repo_id=model_id,
filename=repo_path,
local_dir=self.cache_dir,
local_dir_use_symlinks=False
)
if os.path.dirname(downloaded_path) != self.cache_dir:
target_path = os.path.join(self.cache_dir, save_name)
shutil.move(downloaded_path, target_path)
return True, "Model files downloaded successfully"
except Exception as e:
return False, f"Error downloading model files: {str(e)}"
def load_model(self):
"""Load the clothing segmentation model - improved version."""
try:
# Check and download model if needed
cache_status, message = self.check_model_cache()
if not cache_status:
print(f"Cache check: {message}")
download_status, download_message = self.download_model_files()
if not download_status:
print(f"β {download_message}")
return False
# Load model if needed
if self.processor is None:
print("Loading clothes segmentation model...")
self.processor = SegformerImageProcessor.from_pretrained(self.cache_dir)
self.model = AutoModelForSemanticSegmentation.from_pretrained(self.cache_dir)
self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
self.model.to(device)
print("β
Clothes segmentation model loaded successfully")
return True
except Exception as e:
print(f"β Error loading clothes model: {e}")
self.clear_model() # Cleanup on error
return False
def segment_clothes(self, image_path: str, target_classes: list = None, process_res: int = 512) -> np.ndarray:
"""
Segment clothing from an image - improved version with process_res parameter.
Args:
image_path: Path to the image
target_classes: List of clothing classes to segment (default: ["Upper-clothes"])
process_res: Processing resolution (default: 512)
Returns:
Binary mask as numpy array
"""
if target_classes is None:
target_classes = ["Upper-clothes"]
if not self.load_model():
print("β Cannot load clothes segmentation model")
return None
try:
# Load and preprocess image
image = cv2.imread(image_path)
if image is None:
print(f"β Could not load image: {image_path}")
return None
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size = image_rgb.shape[:2]
# Preprocess image with custom resolution
pil_image = Image.fromarray(image_rgb)
# Resize for processing if needed
if process_res != 512:
pil_image = pil_image.resize((process_res, process_res), Image.Resampling.LANCZOS)
inputs = self.processor(images=pil_image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Run inference
with torch.no_grad():
outputs = self.model(**inputs)
logits = outputs.logits.cpu()
# Resize logits to original image size
upsampled_logits = nn.functional.interpolate(
logits,
size=original_size,
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
# Combine selected class masks
combined_mask = None
for class_name in target_classes:
if class_name in self.class_map:
mask = (pred_seg == self.class_map[class_name]).float()
if combined_mask is None:
combined_mask = mask
else:
combined_mask = torch.clamp(combined_mask + mask, 0, 1)
else:
print(f"β οΈ Unknown class: {class_name}")
if combined_mask is None:
print(f"β No valid classes found in: {target_classes}")
return None
# Convert to numpy
mask_np = combined_mask.numpy().astype(np.float32)
return mask_np
except Exception as e:
print(f"β Error in clothes segmentation: {e}")
return None
finally:
# Clean up model if not training (consistent with updated repo)
if self.model is not None and not self.model.training:
self.clear_model()
def segment_clothes_with_filters(self, image_path: str, target_classes: list = None,
mask_blur: int = 0, mask_offset: int = 0,
process_res: int = 512) -> np.ndarray:
"""
Segment clothing with additional filtering options - new method from updated repo.
Args:
image_path: Path to the image
target_classes: List of clothing classes to segment
mask_blur: Blur amount for mask edges
mask_offset: Expand/Shrink mask boundary
process_res: Processing resolution
Returns:
Filtered binary mask as numpy array
"""
# Get initial mask
mask = self.segment_clothes(image_path, target_classes, process_res)
if mask is None:
return None
try:
# Convert to PIL for filtering
mask_image = Image.fromarray((mask * 255).astype(np.uint8))
# Apply blur if specified
if mask_blur > 0:
mask_image = mask_image.filter(ImageFilter.GaussianBlur(radius=mask_blur))
# Apply offset if specified
if mask_offset != 0:
if mask_offset > 0:
mask_image = mask_image.filter(ImageFilter.MaxFilter(size=mask_offset * 2 + 1))
else:
mask_image = mask_image.filter(ImageFilter.MinFilter(size=-mask_offset * 2 + 1))
# Convert back to numpy
filtered_mask = np.array(mask_image).astype(np.float32) / 255.0
return filtered_mask
except Exception as e:
print(f"β Error applying filters: {e}")
return mask
# Standalone function for easy usage
def segment_upper_clothes(image_path: str) -> np.ndarray:
"""
Convenience function to segment upper clothes from an image.
Args:
image_path: Path to the image
Returns:
Binary mask as numpy array or None if failed
"""
segmenter = ClothesSegmentation()
return segmenter.segment_clothes(image_path, ["Upper-clothes"]) |