shukdevdattaEX's picture
Create app.py
38b2ece verified
raw
history blame
11.8 kB
import gradio as gr
import base64
import io
import os
from openai import OpenAI
import PyPDF2
from PIL import Image
import speech_recognition as sr
import tempfile
import cv2
import numpy as np
from typing import List, Tuple, Optional
import json
class MultimodalChatbot:
def __init__(self, api_key: str):
self.client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key,
)
self.model = "google/gemma-3n-e2b-it:free"
self.conversation_history = []
def encode_image_to_base64(self, image) -> str:
"""Convert PIL Image to base64 string"""
if isinstance(image, str):
# If it's a file path
with open(image, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
else:
# If it's a PIL Image
buffered = io.BytesIO()
image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def extract_pdf_text(self, pdf_file) -> str:
"""Extract text from PDF file"""
try:
if hasattr(pdf_file, 'name'):
# Gradio file object
pdf_path = pdf_file.name
else:
pdf_path = pdf_file
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
return f"Error extracting PDF: {str(e)}"
def transcribe_audio(self, audio_file) -> str:
"""Transcribe audio file to text"""
try:
recognizer = sr.Recognizer()
if hasattr(audio_file, 'name'):
audio_path = audio_file.name
else:
audio_path = audio_file
with sr.AudioFile(audio_path) as source:
audio_data = recognizer.record(source)
text = recognizer.recognize_google(audio_data)
return text
except Exception as e:
return f"Error transcribing audio: {str(e)}"
def process_video(self, video_file) -> List[str]:
"""Extract frames from video and convert to base64"""
try:
if hasattr(video_file, 'name'):
video_path = video_file.name
else:
video_path = video_file
cap = cv2.VideoCapture(video_path)
frames = []
frame_count = 0
# Extract frames (every 30 frames to avoid too many)
while cap.read()[0] and frame_count < 10: # Limit to 10 frames
ret, frame = cap.read()
if ret and frame_count % 30 == 0:
# Convert BGR to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(rgb_frame)
base64_frame = self.encode_image_to_base64(pil_image)
frames.append(base64_frame)
frame_count += 1
cap.release()
return frames
except Exception as e:
return [f"Error processing video: {str(e)}"]
def create_multimodal_message(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None) -> dict:
"""Create a multimodal message for the API"""
content_parts = []
# Add text content
if text_input:
content_parts.append({"type": "text", "text": text_input})
# Process PDF
if pdf_file is not None:
pdf_text = self.extract_pdf_text(pdf_file)
content_parts.append({
"type": "text",
"text": f"PDF Content:\n{pdf_text}"
})
# Process Audio
if audio_file is not None:
audio_text = self.transcribe_audio(audio_file)
content_parts.append({
"type": "text",
"text": f"Audio Transcription:\n{audio_text}"
})
# Process Image
if image_file is not None:
image_base64 = self.encode_image_to_base64(image_file)
content_parts.append({
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_base64}"
}
})
# Process Video
if video_file is not None:
video_frames = self.process_video(video_file)
for i, frame_base64 in enumerate(video_frames):
if not frame_base64.startswith("Error"):
content_parts.append({
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{frame_base64}"
}
})
return {"role": "user", "content": content_parts}
def chat(self,
text_input: str = "",
pdf_file=None,
audio_file=None,
image_file=None,
video_file=None,
history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]:
"""Main chat function"""
if history is None:
history = []
try:
# Create user message summary for display
user_message_parts = []
if text_input:
user_message_parts.append(f"Text: {text_input}")
if pdf_file:
user_message_parts.append("πŸ“„ PDF uploaded")
if audio_file:
user_message_parts.append("🎀 Audio uploaded")
if image_file:
user_message_parts.append("πŸ–ΌοΈ Image uploaded")
if video_file:
user_message_parts.append("πŸŽ₯ Video uploaded")
user_display = " | ".join(user_message_parts)
# Create multimodal message
user_message = self.create_multimodal_message(
text_input, pdf_file, audio_file, image_file, video_file
)
# Add to conversation history
messages = [user_message]
# Get response from Gemma
completion = self.client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://multimodal-chatbot.local",
"X-Title": "Multimodal Chatbot",
},
model=self.model,
messages=messages,
max_tokens=1024,
temperature=0.7
)
bot_response = completion.choices[0].message.content
# Update history
history.append((user_display, bot_response))
return history, ""
except Exception as e:
error_msg = f"Error: {str(e)}"
history.append((user_display if 'user_display' in locals() else "Error in input", error_msg))
return history, ""
def create_interface():
"""Create the Gradio interface"""
# Initialize chatbot (you'll need to set your API key)
api_key = os.getenv("OPENROUTER_API_KEY", "your_api_key_here")
chatbot = MultimodalChatbot(api_key)
with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ€– Multimodal Chatbot with Gemma 3n
This chatbot can process multiple types of input:
- **Text**: Regular text messages
- **PDF**: Extract and analyze document content
- **Audio**: Transcribe speech to text
- **Images**: Analyze visual content
- **Video**: Extract frames and analyze video content
**Setup**: Set your OpenRouter API key as an environment variable `OPENROUTER_API_KEY`
""")
with gr.Row():
with gr.Column(scale=1):
# Input components
text_input = gr.Textbox(
label="πŸ’¬ Text Input",
placeholder="Type your message here...",
lines=3
)
pdf_input = gr.File(
label="πŸ“„ PDF Upload",
file_types=[".pdf"],
type="filepath"
)
audio_input = gr.File(
label="🎀 Audio Upload",
file_types=[".wav", ".mp3", ".m4a", ".flac"],
type="filepath"
)
image_input = gr.Image(
label="πŸ–ΌοΈ Image Upload",
type="pil"
)
video_input = gr.File(
label="πŸŽ₯ Video Upload",
file_types=[".mp4", ".avi", ".mov", ".mkv"],
type="filepath"
)
submit_btn = gr.Button("πŸš€ Send", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
with gr.Column(scale=2):
# Chat interface
chatbot_interface = gr.Chatbot(
label="Chat History",
height=600,
bubble_full_width=False
)
# Event handlers
def process_input(text, pdf, audio, image, video, history):
return chatbot.chat(text, pdf, audio, image, video, history)
def clear_all():
return [], "", None, None, None, None
# Button events
submit_btn.click(
process_input,
inputs=[text_input, pdf_input, audio_input, image_input, video_input, chatbot_interface],
outputs=[chatbot_interface, text_input]
)
clear_btn.click(
clear_all,
outputs=[chatbot_interface, text_input, pdf_input, audio_input, image_input, video_input]
)
# Enter key support
text_input.submit(
process_input,
inputs=[text_input, pdf_input, audio_input, image_input, video_input, chatbot_interface],
outputs=[chatbot_interface, text_input]
)
# Examples
gr.Markdown("""
### 🎯 Example Usage:
- Upload a PDF and ask "Summarize this document"
- Upload an image and ask "What do you see in this image?"
- Record audio and ask "What did I say?"
- Upload a video and ask "Describe what's happening"
- Combine multiple inputs: "Compare this image with the PDF content"
""")
return demo
if __name__ == "__main__":
# Required packages (install with pip):
required_packages = [
"gradio",
"openai",
"PyPDF2",
"Pillow",
"SpeechRecognition",
"opencv-python",
"numpy"
]
print("Required packages:", ", ".join(required_packages))
print("\nTo install: pip install " + " ".join(required_packages))
print("\nDon't forget to set your OPENROUTER_API_KEY environment variable!")
demo = create_interface()
demo.launch(
share=True
)