File size: 9,259 Bytes
4560f26
 
 
 
 
 
 
 
 
 
cdb0790
4560f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25fc7d9
4560f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79f2a6c
4560f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import gradio as gr
from groq import Groq
from datetime import datetime
import time 

class RealTimeFactChecker:

    def __init__(self):
        self.client = None
        self.model_options=["groq/compound", "groq/compound-mini"]

    def initialize_client(self, api_key):
        try:
            self.client=Groq(api_key=api_key)
            return True, "βœ… API Key validated successfully!"

        except Exception as e:
            return False, f"❌ Error initializing client: {str(e)}"

    def get_system_prompt(self):
        return """You are a Real-time Fact Checker and News Agent. Your primary role is to provide accurate, up-to-date information by leveraging web search when needed.
CORE RESPONSIBILITIES:
1. **Fact Verification**: Always verify claims with current, reliable sources
2. **Real-time Information**: Use web search for any information that changes frequently (news, stocks, weather, current events)
3. **Source Transparency**: When using web search, mention the sources or indicate that you've searched for current information
4. **Accuracy First**: If information is uncertain or conflicting, acknowledge this clearly
RESPONSE GUIDELINES:
- **Structure**: Start with a clear, direct answer, then provide supporting details
- **Recency**: Always prioritize the most recent, reliable information
- **Clarity**: Use clear, professional language while remaining accessible
- **Completeness**: Provide comprehensive answers but stay focused on the query
- **Source Awareness**: When you've searched for information, briefly indicate this (e.g., "Based on current reports..." or "Recent data shows...")
WHEN TO SEARCH:
- Breaking news or current events
- Stock prices, market data, or financial information
- Weather conditions or forecasts
- Recent scientific discoveries or research
- Current political developments
- Real-time statistics or data
- Verification of recent claims or rumors
RESPONSE FORMAT:
- Lead with key facts
- Include relevant context
- Mention timeframe when relevant (e.g., "as of today", "this week")
- If multiple sources conflict, acknowledge this
- End with a clear summary for complex topics
Remember: Your goal is to be the most reliable, up-to-date source of information possible."""

    def query_compound_model(self, query, model, temperature=0.7):

        if not self.client:
            return "❌ Please set a valid API key first.", None, None

        try: 

            start_time=time.time()

            system_prompt = self.get_system_prompt()

            chat_completion = self.client.chat.completions.create(
                messages=[
                    {
                        "role": "system",
                        "content": system_prompt
                    },
                    {
                        "role": "user",
                        "content": query,
                    },  
                ],
                model=model,
                temperature=temperature,
                max_tokens=1500
            
            )
                
            end_time = time.time()

            response_time= round(end_time-start_time, 2)

            response_content = chat_completion.choices[0].message.content # response to the question
            executed_tools = getattr(chat_completion.choices[0].message, 'executed_tools', None)
            tool_info = self.format_tool_info(executed_tools)
            
            return response_content, tool_info, response_time

        except Exception as e:
            return f"❌ Error querying model: {str(e)}", None, None


    def format_tool_info(self, executed_tools):
        """Format executed tools information for display"""

        if not executed_tools:
            return "πŸ” Tools Used: None (Used existing knowledge)"

        tool_info = "πŸ” Tools Used:\n"

        for i, tool in enumerate(executed_tools, 1):
            try:
                if hasattr(tool, 'name'):
                    tool_name = tool.name
                elif hasattr(tool, 'tool_name'):
                    tool_name = tool.tool_name
                elif isinstance(tool, dict):
                    tool_name = tool.get('name', 'Unknown')
                else:
                    tool_name = str(tool)
                
                tool_info += f"{i}. {tool_name}\n"
                
                if hasattr(tool, 'parameters'):
                    params = tool.parameters
                    if isinstance(params, dict):
                        for key, value in params.items():
                            tool_info += f"   - {key}: {value}\n"
                elif hasattr(tool, 'input'):
                    tool_info += f"   - Input: {tool.input}\n"

            except Exception as e:
                tool_info += f"{i}. Tool {i} (Error parsing details)\n"

        return tool_info

#### UI Design

def create_interface():
    fact_checker = RealTimeFactChecker()

    def validate_api_key(api_key):
        if not api_key or api_key.strip() == "":
            return "❌ Please enter a valid API key", False
        
        success, message = fact_checker.initialize_client(api_key.strip())
        return message, success

    def process_query(query, model, temperature, api_key):
        if not api_key or api_key.strip() == "":
            return "❌ Please set your API key first", "", ""
        
        if not query or query.strip() == "":
            return "❌ Please enter a query", "", ""

        if not fact_checker.client:
            success, message = fact_checker.initialize_client(api_key.strip())
            if not success:
                return message, "", ""

        response, tool_info, response_time = fact_checker.query_compound_model(
            query.strip(), model, temperature
        )

        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        formatted_response = f"**Query:** {query}\n\n**Response:**\n{response}\n\n---\n*Generated at {timestamp} in {response_time}s*" # 11/11/2025 Query Response Time: 20s

        return formatted_response, tool_info or "", f"Response time: {response_time}s"

    with gr.Blocks(title="Real-time Fact Checker & News Agent", theme=gr.themes.Ocean()) as demo:
        gr.Markdown("# Real-time Fact Checker & News Agent")
        gr.Markdown("Powered by Groq's Compound Models with Built-in Web Search")

        with gr.Row():
            with gr.Column():
                api_key_input = gr.Textbox(
                    label="Groq API Key",
                    placeholder="Enter your Groq API key here...",
                    type="password",
                    info="Get your free API key from https://console.groq.com/"
                )
                api_status = gr.Textbox(
                    label="Status",
                    value="Please enter your API key",
                    interactive=False
                )
                validate_btn = gr.Button("Validate API Key")

                query_input = gr.Textbox(
                    label="Query",
                    placeholder="e.g., What are the latest AI developments today?",
                    lines=4
                )

                with gr.Row():
                    model_choice = gr.Dropdown(
                        choices=fact_checker.model_options,
                        value="groq/compound",
                        label="Model",
                        info="compound-: More capable | compound-mini: Faster"
                    )

                    temperature = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        label="Temperature",
                        info="Higher = more creative, Lower = more focused"
                    )

                with gr.Row():
                    submit_btn = gr.Button("Get Real-time Information")
                    clear_btn = gr.Button("Clear")

            with gr.Column():

                response_output = gr.Markdown(
                    label="Response",
                    value="*Your response will appear here...*"
                )

                tool_info_output = gr.Markdown(
                    label="Tool Execution Info",
                    value="*Tool execution details will appear here...*"
                )

                performance_output = gr.Textbox(
                    label="Performance",
                    value="",
                    interactive=False
                )

        validate_btn.click(
            fn=validate_api_key,
            inputs=[api_key_input],
            outputs=[api_status, gr.State()]
        )

        submit_btn.click(
            fn=process_query,
            inputs=[query_input, model_choice, temperature, api_key_input],
            outputs=[response_output, tool_info_output, performance_output]
        )

        clear_btn.click(
            fn=lambda: ("", "*Your response will appear here...*", "*Tool execution details will appear here...*", ""),
            outputs=[query_input, response_output, tool_info_output, performance_output]
        )

    
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
    )