Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,6 +54,67 @@ def extract_medicine_names(image):
|
|
| 54 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 55 |
)[0]
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
return output_text
|
| 58 |
|
| 59 |
# Create Gradio interface
|
|
@@ -70,7 +131,7 @@ with gr.Blocks(title="Medicine Name Extractor") as app:
|
|
| 70 |
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
| 71 |
|
| 72 |
extract_btn.click(
|
| 73 |
-
fn=
|
| 74 |
inputs=input_image,
|
| 75 |
outputs=output_text
|
| 76 |
)
|
|
|
|
| 54 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 55 |
)[0]
|
| 56 |
|
| 57 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
| 58 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
| 59 |
+
|
| 60 |
+
return output_text
|
| 61 |
+
|
| 62 |
+
# Create a singleton model and processor to avoid reloading for each request
|
| 63 |
+
model_instance = None
|
| 64 |
+
processor_instance = None
|
| 65 |
+
|
| 66 |
+
def get_model_and_processor():
|
| 67 |
+
global model_instance, processor_instance
|
| 68 |
+
if model_instance is None or processor_instance is None:
|
| 69 |
+
model_instance, processor_instance = load_model()
|
| 70 |
+
return model_instance, processor_instance
|
| 71 |
+
|
| 72 |
+
# Optimized extraction function that uses the singleton model
|
| 73 |
+
def extract_medicine_names_optimized(image):
|
| 74 |
+
if image is None:
|
| 75 |
+
return "Please upload an image."
|
| 76 |
+
|
| 77 |
+
model, processor = get_model_and_processor()
|
| 78 |
+
|
| 79 |
+
# Prepare the message with the specific prompt for medicine extraction
|
| 80 |
+
messages = [
|
| 81 |
+
{
|
| 82 |
+
"role": "user",
|
| 83 |
+
"content": [
|
| 84 |
+
{
|
| 85 |
+
"type": "image",
|
| 86 |
+
"image": image,
|
| 87 |
+
},
|
| 88 |
+
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
| 89 |
+
],
|
| 90 |
+
}
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
# Prepare for inference
|
| 94 |
+
text = processor.apply_chat_template(
|
| 95 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 96 |
+
)
|
| 97 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 98 |
+
inputs = processor(
|
| 99 |
+
text=[text],
|
| 100 |
+
images=image_inputs,
|
| 101 |
+
videos=video_inputs,
|
| 102 |
+
padding=True,
|
| 103 |
+
return_tensors="pt",
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Generate output
|
| 107 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
| 108 |
+
generated_ids_trimmed = [
|
| 109 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 110 |
+
]
|
| 111 |
+
output_text = processor.batch_decode(
|
| 112 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 113 |
+
)[0]
|
| 114 |
+
|
| 115 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
| 116 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
| 117 |
+
|
| 118 |
return output_text
|
| 119 |
|
| 120 |
# Create Gradio interface
|
|
|
|
| 131 |
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
| 132 |
|
| 133 |
extract_btn.click(
|
| 134 |
+
fn=extract_medicine_names_optimized,
|
| 135 |
inputs=input_image,
|
| 136 |
outputs=output_text
|
| 137 |
)
|