Update app.py
Browse files
app.py
CHANGED
|
@@ -61,7 +61,8 @@ def extract_medicines(api_key, image):
|
|
| 61 |
def recommend_medicine(api_key, medicine_name, csv_file=None):
|
| 62 |
"""
|
| 63 |
Use Together API to recommend alternative medicines based on input medicine name
|
| 64 |
-
using data from the provided CSV file with specific column structure
|
|
|
|
| 65 |
"""
|
| 66 |
try:
|
| 67 |
# If CSV file is provided, use it; otherwise use default
|
|
@@ -73,14 +74,36 @@ def recommend_medicine(api_key, medicine_name, csv_file=None):
|
|
| 73 |
df = pd.read_csv(csv_file.name)
|
| 74 |
else:
|
| 75 |
# Use the default medicine_dataset.csv in the current directory
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
return f"Error: Medicine '{medicine_name}' not found in the dataset. Please check the spelling or try another medicine."
|
| 81 |
|
| 82 |
-
# Create
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
- name: Medicine name
|
| 85 |
- substitute0 through substitute4: Potential substitute medicines
|
| 86 |
- sideEffect0 through sideEffect41: Possible side effects
|
|
@@ -90,47 +113,28 @@ def recommend_medicine(api_key, medicine_name, csv_file=None):
|
|
| 90 |
- Therapeutic Class: The therapeutic classification
|
| 91 |
- Action Class: How the medicine works
|
| 92 |
|
| 93 |
-
|
| 94 |
-
1. Find the row in the dataset where name matches exactly "{medicine_name}"
|
| 95 |
-
2. Find alternatives by:
|
| 96 |
-
- Using the substitute0-substitute4 values as primary alternatives
|
| 97 |
-
- Finding other medicines with similar Chemical Class, Therapeutic Class, or Action Class
|
| 98 |
|
| 99 |
-
|
| 100 |
-
- Name of the alternative medicine
|
| 101 |
-
- All side effects (from relevant sideEffect columns)
|
| 102 |
-
- All uses (from relevant use columns)
|
| 103 |
-
- Chemical Class, Habit Forming status, Therapeutic Class, and Action Class
|
| 104 |
-
- A similarity score (0-1) indicating how similar it is to the original medicine
|
| 105 |
|
| 106 |
-
|
| 107 |
-
""
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
if substitutes:
|
| 126 |
-
system_prompt += f"The primary substitutes for {medicine_name} are: {', '.join(substitutes)}\n\n"
|
| 127 |
-
|
| 128 |
-
# Include a sample of other medicines for comparison
|
| 129 |
-
other_medicines = df[df['name'] != medicine_name].sample(min(10, len(df)-1)) if len(df) > 1 else pd.DataFrame()
|
| 130 |
-
if not other_medicines.empty:
|
| 131 |
-
system_prompt += "Here's a sample of other medicines in the dataset for comparison:\n"
|
| 132 |
-
for idx, row in other_medicines.iterrows():
|
| 133 |
-
system_prompt += f"- {row['name']}: Chemical Class: {row['Chemical Class']}, Therapeutic Class: {row['Therapeutic Class']}, Action Class: {row['Action Class']}\n"
|
| 134 |
|
| 135 |
# Initialize Together client with the API key
|
| 136 |
client = Together(api_key=api_key)
|
|
@@ -145,14 +149,20 @@ Format the response clearly with headings for "Recommended Medicines", "Medicine
|
|
| 145 |
},
|
| 146 |
{
|
| 147 |
"role": "user",
|
| 148 |
-
"content": f"Please recommend alternatives for {medicine_name} based on the
|
| 149 |
}
|
| 150 |
],
|
| 151 |
-
max_tokens=2000
|
|
|
|
| 152 |
)
|
| 153 |
|
| 154 |
-
#
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
except Exception as e:
|
| 158 |
return f"Error: {str(e)}"
|
|
@@ -181,10 +191,77 @@ def send_medicine_to_recommender(api_key, medicine_names, csv_file):
|
|
| 181 |
# Call the recommend medicine function with the first extracted medicine
|
| 182 |
return recommend_medicine(api_key, first_medicine, csv_file)
|
| 183 |
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
with gr.Blocks(title="Medicine Assistant") as app:
|
| 186 |
gr.Markdown("# Medicine Assistant")
|
| 187 |
-
gr.Markdown("This application helps you extract medicine names from prescriptions
|
| 188 |
|
| 189 |
# API key input (shared between tabs)
|
| 190 |
api_key_input = gr.Textbox(
|
|
@@ -194,11 +271,10 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
| 194 |
)
|
| 195 |
|
| 196 |
# Create a file input for CSV that can be shared between tabs
|
| 197 |
-
# Fixed the 'type' parameter to use 'filepath' instead of 'file'
|
| 198 |
csv_file_input = gr.File(
|
| 199 |
label="Upload Medicine CSV (Optional)",
|
| 200 |
file_types=[".csv"],
|
| 201 |
-
type="filepath"
|
| 202 |
)
|
| 203 |
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
|
| 204 |
|
|
@@ -211,11 +287,22 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
| 211 |
with gr.Column():
|
| 212 |
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
| 213 |
extract_btn = gr.Button("Extract Medicines")
|
| 214 |
-
recommend_from_extract_btn = gr.Button("Get Recommendations for First Medicine")
|
| 215 |
|
| 216 |
with gr.Column():
|
| 217 |
extracted_output = gr.Textbox(label="Extracted Medicines", lines=10)
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
# Connect the buttons to functions
|
| 221 |
extract_btn.click(
|
|
@@ -230,13 +317,21 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
| 230 |
outputs=recommendation_from_extract_output
|
| 231 |
)
|
| 232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
gr.Markdown("""
|
| 234 |
### How to use:
|
| 235 |
1. Enter your Together API key
|
| 236 |
2. Upload a clear image of a prescription
|
| 237 |
3. Click 'Extract Medicines' to see the identified medicines
|
| 238 |
4. Optionally upload a custom medicine dataset CSV
|
| 239 |
-
5.
|
|
|
|
|
|
|
| 240 |
|
| 241 |
### Note:
|
| 242 |
- Your API key is used only for the current session
|
|
@@ -251,12 +346,12 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
| 251 |
with gr.Column():
|
| 252 |
medicine_name = gr.Textbox(
|
| 253 |
label="Medicine Name",
|
| 254 |
-
placeholder="Enter a medicine name
|
| 255 |
)
|
| 256 |
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
| 257 |
|
| 258 |
with gr.Column():
|
| 259 |
-
recommendation_output = gr.Markdown(
|
| 260 |
|
| 261 |
submit_btn.click(
|
| 262 |
recommend_medicine,
|
|
@@ -267,30 +362,25 @@ with gr.Blocks(title="Medicine Assistant") as app:
|
|
| 267 |
gr.Markdown("""
|
| 268 |
## How to use this tool:
|
| 269 |
1. Enter your Together API key (same key used across the application)
|
| 270 |
-
2. Enter a medicine name
|
| 271 |
3. Click "Get Recommendations" to see alternatives
|
| 272 |
|
| 273 |
-
###
|
| 274 |
-
|
| 275 |
-
-
|
| 276 |
-
-
|
| 277 |
-
- `sideEffect0` through `sideEffect41`: Possible side effects
|
| 278 |
-
- `use0` through `use4`: Medical uses
|
| 279 |
-
- `Chemical Class`: The chemical classification
|
| 280 |
-
- `Habit Forming`: Whether the medicine is habit-forming
|
| 281 |
-
- `Therapeutic Class`: The therapeutic classification
|
| 282 |
-
- `Action Class`: How the medicine works
|
| 283 |
""")
|
| 284 |
|
| 285 |
gr.Markdown("""
|
| 286 |
## About This Application
|
| 287 |
|
| 288 |
-
This Medicine Assistant application combines
|
| 289 |
|
| 290 |
1. **Prescription Medicine Extractor**: Uses computer vision AI to identify medicine names from prescription images
|
| 291 |
2. **Medicine Alternative Recommender**: Provides detailed information about alternative medications
|
|
|
|
| 292 |
|
| 293 |
-
|
| 294 |
|
| 295 |
### Important Note
|
| 296 |
|
|
|
|
| 61 |
def recommend_medicine(api_key, medicine_name, csv_file=None):
|
| 62 |
"""
|
| 63 |
Use Together API to recommend alternative medicines based on input medicine name
|
| 64 |
+
using data from the provided CSV file with specific column structure.
|
| 65 |
+
It will use AI to find similar medicines even if the exact name isn't in the dataset.
|
| 66 |
"""
|
| 67 |
try:
|
| 68 |
# If CSV file is provided, use it; otherwise use default
|
|
|
|
| 74 |
df = pd.read_csv(csv_file.name)
|
| 75 |
else:
|
| 76 |
# Use the default medicine_dataset.csv in the current directory
|
| 77 |
+
try:
|
| 78 |
+
df = pd.read_csv("medicine_dataset.csv")
|
| 79 |
+
except FileNotFoundError:
|
| 80 |
+
return "Error: Default medicine_dataset.csv not found. Please upload a CSV file."
|
| 81 |
|
| 82 |
+
# Check if medicine is in the dataset
|
| 83 |
+
medicine_exists = medicine_name in df['name'].values
|
|
|
|
| 84 |
|
| 85 |
+
# Create a helpful context about the dataset to send to the LLM
|
| 86 |
+
dataset_overview = f"The dataset contains {len(df)} medicines with columns for name, substitutes, side effects, uses, chemical class, etc."
|
| 87 |
+
|
| 88 |
+
# Sample of medicine names to give the model context
|
| 89 |
+
sample_names = df['name'].sample(min(20, len(df))).tolist()
|
| 90 |
+
medicine_sample = f"Sample medicines in the dataset: {', '.join(sample_names)}"
|
| 91 |
+
|
| 92 |
+
# Extract specific medicine data if available
|
| 93 |
+
medicine_data = None
|
| 94 |
+
medicine_info_str = ""
|
| 95 |
+
if medicine_exists:
|
| 96 |
+
medicine_data = df[df['name'] == medicine_name]
|
| 97 |
+
medicine_info_str = medicine_data.to_string(index=False)
|
| 98 |
+
|
| 99 |
+
# Create system prompt with dataset context
|
| 100 |
+
system_prompt = f"""You are a pharmaceutical expert system that recommends alternative medicines based on a comprehensive medicine dataset. The user has provided the medicine name "{medicine_name}".
|
| 101 |
+
|
| 102 |
+
DATASET INFORMATION:
|
| 103 |
+
{dataset_overview}
|
| 104 |
+
{medicine_sample}
|
| 105 |
+
|
| 106 |
+
The dataset has the following columns:
|
| 107 |
- name: Medicine name
|
| 108 |
- substitute0 through substitute4: Potential substitute medicines
|
| 109 |
- sideEffect0 through sideEffect41: Possible side effects
|
|
|
|
| 113 |
- Therapeutic Class: The therapeutic classification
|
| 114 |
- Action Class: How the medicine works
|
| 115 |
|
| 116 |
+
YOUR TASK:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
+
{"The medicine was found in the dataset with the following information:" if medicine_exists else "The medicine was NOT found in the dataset with an exact match. Your task is to:"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
+
{medicine_info_str if medicine_exists else "1. Identify what kind of medicine this likely is based on its name (e.g., antibiotics, pain relievers, etc.)"}
|
| 121 |
+
{'' if medicine_exists else "2. Look for medicines in the sample list that might be similar or serve similar purposes"}
|
| 122 |
|
| 123 |
+
Please recommend alternative medicines for "{medicine_name}" with the following details for each:
|
| 124 |
+
1. Name of the alternative medicine
|
| 125 |
+
2. Why it's a good alternative (similar chemical composition, therapeutic use, etc.)
|
| 126 |
+
3. Potential side effects to be aware of
|
| 127 |
+
4. Usage recommendations
|
| 128 |
+
5. Similarity to the original medicine (high, medium, low)
|
| 129 |
+
|
| 130 |
+
Include at least 3-5 alternatives if possible.
|
| 131 |
+
|
| 132 |
+
IMPORTANT:
|
| 133 |
+
- If the medicine name contains strength or formulation (like "500mg" or "Duo"), focus on finding the base medicine first
|
| 134 |
+
- Explain why these alternatives might be suitable replacements
|
| 135 |
+
- Include appropriate medical disclaimers
|
| 136 |
+
- Format your response clearly with headings for each alternative medicine
|
| 137 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
# Initialize Together client with the API key
|
| 140 |
client = Together(api_key=api_key)
|
|
|
|
| 149 |
},
|
| 150 |
{
|
| 151 |
"role": "user",
|
| 152 |
+
"content": f"Please recommend alternatives for {medicine_name} based on the available information."
|
| 153 |
}
|
| 154 |
],
|
| 155 |
+
max_tokens=2000,
|
| 156 |
+
temperature=0.7 # Slightly higher temperature for creative recommendations
|
| 157 |
)
|
| 158 |
|
| 159 |
+
# Get the raw response
|
| 160 |
+
recommendation_text = response.choices[0].message.content
|
| 161 |
+
|
| 162 |
+
# Add disclaimer
|
| 163 |
+
final_response = recommendation_text + "\n\n---\n\n**DISCLAIMER:** This information is for educational purposes only. Always consult with a healthcare professional before making any changes to your medication."
|
| 164 |
+
|
| 165 |
+
return final_response
|
| 166 |
|
| 167 |
except Exception as e:
|
| 168 |
return f"Error: {str(e)}"
|
|
|
|
| 191 |
# Call the recommend medicine function with the first extracted medicine
|
| 192 |
return recommend_medicine(api_key, first_medicine, csv_file)
|
| 193 |
|
| 194 |
+
def analyze_full_prescription(api_key, medicine_names, csv_file):
|
| 195 |
+
"""
|
| 196 |
+
Takes all extracted medicine names and analyzes their interactions and provides comprehensive information
|
| 197 |
+
"""
|
| 198 |
+
if not medicine_names or medicine_names.startswith("Error") or medicine_names.startswith("Please"):
|
| 199 |
+
return "Please extract valid medicine names first"
|
| 200 |
+
|
| 201 |
+
try:
|
| 202 |
+
# Parse the medicine names from the extracted text
|
| 203 |
+
medicine_lines = medicine_names.strip().split('\n')
|
| 204 |
+
cleaned_medicines = []
|
| 205 |
+
|
| 206 |
+
# Clean up medicine names (remove bullets, numbers, etc.)
|
| 207 |
+
for medicine in medicine_lines:
|
| 208 |
+
cleaned_medicine = medicine.lstrip('•-*0123456789. ').strip()
|
| 209 |
+
if cleaned_medicine:
|
| 210 |
+
cleaned_medicines.append(cleaned_medicine)
|
| 211 |
+
|
| 212 |
+
if not cleaned_medicines:
|
| 213 |
+
return "No valid medicine names found in extraction"
|
| 214 |
+
|
| 215 |
+
# Create a prompt for the LLM to analyze the full prescription
|
| 216 |
+
medicines_list = ", ".join(cleaned_medicines)
|
| 217 |
+
|
| 218 |
+
system_prompt = f"""You are a pharmaceutical expert analyzing a full prescription containing the following medicines: {medicines_list}.
|
| 219 |
+
|
| 220 |
+
Please provide a comprehensive analysis including:
|
| 221 |
+
|
| 222 |
+
1. Purpose: The likely medical condition(s) being treated with this combination of medicines
|
| 223 |
+
2. Potential interactions: Any known drug interactions between these medicines
|
| 224 |
+
3. Side effects: Common side effects to watch for when taking this combination
|
| 225 |
+
4. Recommendations: General advice for the patient taking these medicines
|
| 226 |
+
5. Questions for the doctor: Important questions the patient should ask their healthcare provider
|
| 227 |
+
|
| 228 |
+
Base your analysis on pharmacological knowledge about these medicines and their typical uses.
|
| 229 |
+
"""
|
| 230 |
+
|
| 231 |
+
# Initialize Together client with the API key
|
| 232 |
+
client = Together(api_key=api_key)
|
| 233 |
+
|
| 234 |
+
# Make API call
|
| 235 |
+
response = client.chat.completions.create(
|
| 236 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
| 237 |
+
messages=[
|
| 238 |
+
{
|
| 239 |
+
"role": "system",
|
| 240 |
+
"content": system_prompt
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"role": "user",
|
| 244 |
+
"content": f"Please analyze this prescription with the following medicines: {medicines_list}"
|
| 245 |
+
}
|
| 246 |
+
],
|
| 247 |
+
max_tokens=2000,
|
| 248 |
+
temperature=0.3 # Lower temperature for more factual responses
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
analysis_text = response.choices[0].message.content
|
| 252 |
+
|
| 253 |
+
# Add disclaimer
|
| 254 |
+
final_response = analysis_text + "\n\n---\n\n**DISCLAIMER:** This analysis is for informational purposes only and should not replace professional medical advice. Always consult with your healthcare provider about your prescription."
|
| 255 |
+
|
| 256 |
+
return final_response
|
| 257 |
+
|
| 258 |
+
except Exception as e:
|
| 259 |
+
return f"Error: {str(e)}"
|
| 260 |
+
|
| 261 |
+
# Create Gradio interface with tabs for all functionalities
|
| 262 |
with gr.Blocks(title="Medicine Assistant") as app:
|
| 263 |
gr.Markdown("# Medicine Assistant")
|
| 264 |
+
gr.Markdown("This application helps you extract medicine names from prescriptions, find alternative medicines, and analyze full prescriptions.")
|
| 265 |
|
| 266 |
# API key input (shared between tabs)
|
| 267 |
api_key_input = gr.Textbox(
|
|
|
|
| 271 |
)
|
| 272 |
|
| 273 |
# Create a file input for CSV that can be shared between tabs
|
|
|
|
| 274 |
csv_file_input = gr.File(
|
| 275 |
label="Upload Medicine CSV (Optional)",
|
| 276 |
file_types=[".csv"],
|
| 277 |
+
type="filepath"
|
| 278 |
)
|
| 279 |
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
|
| 280 |
|
|
|
|
| 287 |
with gr.Column():
|
| 288 |
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
| 289 |
extract_btn = gr.Button("Extract Medicines")
|
|
|
|
| 290 |
|
| 291 |
with gr.Column():
|
| 292 |
extracted_output = gr.Textbox(label="Extracted Medicines", lines=10)
|
| 293 |
+
|
| 294 |
+
with gr.Row():
|
| 295 |
+
with gr.Column(scale=1):
|
| 296 |
+
recommend_from_extract_btn = gr.Button("Get Recommendations for First Medicine", variant="primary")
|
| 297 |
+
analyze_full_btn = gr.Button("Analyze Full Prescription", variant="secondary")
|
| 298 |
+
|
| 299 |
+
with gr.Column(scale=2):
|
| 300 |
+
output_tabs = gr.Tabs()
|
| 301 |
+
with output_tabs:
|
| 302 |
+
with gr.Tab("Recommendations"):
|
| 303 |
+
recommendation_from_extract_output = gr.Markdown()
|
| 304 |
+
with gr.Tab("Full Analysis"):
|
| 305 |
+
full_analysis_output = gr.Markdown()
|
| 306 |
|
| 307 |
# Connect the buttons to functions
|
| 308 |
extract_btn.click(
|
|
|
|
| 317 |
outputs=recommendation_from_extract_output
|
| 318 |
)
|
| 319 |
|
| 320 |
+
analyze_full_btn.click(
|
| 321 |
+
fn=analyze_full_prescription,
|
| 322 |
+
inputs=[api_key_input, extracted_output, csv_file_input],
|
| 323 |
+
outputs=full_analysis_output
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
gr.Markdown("""
|
| 327 |
### How to use:
|
| 328 |
1. Enter your Together API key
|
| 329 |
2. Upload a clear image of a prescription
|
| 330 |
3. Click 'Extract Medicines' to see the identified medicines
|
| 331 |
4. Optionally upload a custom medicine dataset CSV
|
| 332 |
+
5. Choose to:
|
| 333 |
+
- Get alternatives for the first medicine
|
| 334 |
+
- Analyze the entire prescription for interactions and information
|
| 335 |
|
| 336 |
### Note:
|
| 337 |
- Your API key is used only for the current session
|
|
|
|
| 346 |
with gr.Column():
|
| 347 |
medicine_name = gr.Textbox(
|
| 348 |
label="Medicine Name",
|
| 349 |
+
placeholder="Enter a medicine name (e.g., Augmentin 625 Duo)"
|
| 350 |
)
|
| 351 |
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
| 352 |
|
| 353 |
with gr.Column():
|
| 354 |
+
recommendation_output = gr.Markdown()
|
| 355 |
|
| 356 |
submit_btn.click(
|
| 357 |
recommend_medicine,
|
|
|
|
| 362 |
gr.Markdown("""
|
| 363 |
## How to use this tool:
|
| 364 |
1. Enter your Together API key (same key used across the application)
|
| 365 |
+
2. Enter a medicine name - the AI will find it or match similar alternatives
|
| 366 |
3. Click "Get Recommendations" to see alternatives
|
| 367 |
|
| 368 |
+
### Features:
|
| 369 |
+
- Even if the exact medicine isn't in the database, the AI will try to find similar alternatives
|
| 370 |
+
- The system analyzes the medicine name to determine its likely purpose and composition
|
| 371 |
+
- Recommendations include substitutes, side effects, and usage information
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
""")
|
| 373 |
|
| 374 |
gr.Markdown("""
|
| 375 |
## About This Application
|
| 376 |
|
| 377 |
+
This Medicine Assistant application combines powerful tools powered by Large Language Models:
|
| 378 |
|
| 379 |
1. **Prescription Medicine Extractor**: Uses computer vision AI to identify medicine names from prescription images
|
| 380 |
2. **Medicine Alternative Recommender**: Provides detailed information about alternative medications
|
| 381 |
+
3. **Prescription Analyzer**: Analyzes entire prescriptions for potential interactions and insights
|
| 382 |
|
| 383 |
+
All tools utilize the Together AI platform for advanced AI capabilities. Your API key is not stored and is only used to make API calls during your active session.
|
| 384 |
|
| 385 |
### Important Note
|
| 386 |
|