Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
| 3 |
import os
|
| 4 |
import base64
|
|
|
|
| 5 |
|
| 6 |
def extract_medicines(api_key, image):
|
| 7 |
"""
|
|
@@ -56,39 +58,241 @@ def extract_medicines(api_key, image):
|
|
| 56 |
except Exception as e:
|
| 57 |
return f"Error: {str(e)}"
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
gr.Markdown("""
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
""")
|
| 93 |
|
| 94 |
# Launch the app
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
import os
|
| 5 |
import base64
|
| 6 |
+
from together import Together
|
| 7 |
|
| 8 |
def extract_medicines(api_key, image):
|
| 9 |
"""
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
return f"Error: {str(e)}"
|
| 60 |
|
| 61 |
+
def recommend_medicine(api_key, medicine_name, csv_file=None):
|
| 62 |
+
"""
|
| 63 |
+
Use Together API to recommend alternative medicines based on input medicine name
|
| 64 |
+
using data from the provided CSV file with specific column structure
|
| 65 |
+
"""
|
| 66 |
+
try:
|
| 67 |
+
# If CSV file is provided, use it; otherwise use default
|
| 68 |
+
if csv_file is not None:
|
| 69 |
+
# Read the uploaded CSV
|
| 70 |
+
if isinstance(csv_file, str): # Path to default CSV
|
| 71 |
+
df = pd.read_csv(csv_file)
|
| 72 |
+
else: # Uploaded file
|
| 73 |
+
df = pd.read_csv(csv_file.name)
|
| 74 |
+
else:
|
| 75 |
+
# Use the default medicine_dataset.csv in the current directory
|
| 76 |
+
df = pd.read_csv("medicine_dataset.csv")
|
| 77 |
+
|
| 78 |
+
# Verify the medicine name exists in the dataset
|
| 79 |
+
if medicine_name not in df['name'].values:
|
| 80 |
+
return f"Error: Medicine '{medicine_name}' not found in the dataset. Please check the spelling or try another medicine."
|
| 81 |
+
|
| 82 |
+
# Create system prompt with CSV data and column structure information
|
| 83 |
+
system_prompt = f"""Develop an expert system to recommend alternative medicines for {medicine_name} based on the medicine dataset. The dataset has the following columns:
|
| 84 |
+
- name: Medicine name
|
| 85 |
+
- substitute0 through substitute4: Potential substitute medicines
|
| 86 |
+
- sideEffect0 through sideEffect41: Possible side effects
|
| 87 |
+
- use0 through use4: Medical uses
|
| 88 |
+
- Chemical Class: The chemical classification
|
| 89 |
+
- Habit Forming: Whether the medicine is habit-forming
|
| 90 |
+
- Therapeutic Class: The therapeutic classification
|
| 91 |
+
- Action Class: How the medicine works
|
| 92 |
+
|
| 93 |
+
Your task is to:
|
| 94 |
+
1. Find the row in the dataset where name matches exactly "{medicine_name}"
|
| 95 |
+
2. Find alternatives by:
|
| 96 |
+
- Using the substitute0-substitute4 values as primary alternatives
|
| 97 |
+
- Finding other medicines with similar Chemical Class, Therapeutic Class, or Action Class
|
| 98 |
+
|
| 99 |
+
For each recommended alternative, provide:
|
| 100 |
+
- Name of the alternative medicine
|
| 101 |
+
- All side effects (from relevant sideEffect columns)
|
| 102 |
+
- All uses (from relevant use columns)
|
| 103 |
+
- Chemical Class, Habit Forming status, Therapeutic Class, and Action Class
|
| 104 |
+
- A similarity score (0-1) indicating how similar it is to the original medicine
|
| 105 |
+
|
| 106 |
+
Format the response clearly with headings for "Recommended Medicines", "Medicine Details", and "Similarity Score".
|
| 107 |
+
"""
|
| 108 |
+
|
| 109 |
+
# Extract the specific row containing the medicine data to give more context
|
| 110 |
+
medicine_data = df[df['name'] == medicine_name]
|
| 111 |
+
if not medicine_data.empty:
|
| 112 |
+
# Convert the specific medicine data to a string representation
|
| 113 |
+
medicine_info = medicine_data.to_string(index=False)
|
| 114 |
+
system_prompt += f"\n\nThe specific data for {medicine_name} is:\n{medicine_info}\n\n"
|
| 115 |
|
| 116 |
+
# Extract substitute information for better recommendations
|
| 117 |
+
substitutes = []
|
| 118 |
+
for i in range(5): # substitute0 through substitute4
|
| 119 |
+
col_name = f"substitute{i}"
|
| 120 |
+
if col_name in medicine_data.columns:
|
| 121 |
+
sub_value = medicine_data[col_name].iloc[0]
|
| 122 |
+
if pd.notna(sub_value) and sub_value != "":
|
| 123 |
+
substitutes.append(sub_value)
|
| 124 |
+
|
| 125 |
+
if substitutes:
|
| 126 |
+
system_prompt += f"The primary substitutes for {medicine_name} are: {', '.join(substitutes)}\n\n"
|
| 127 |
+
|
| 128 |
+
# Include a sample of other medicines for comparison
|
| 129 |
+
other_medicines = df[df['name'] != medicine_name].sample(min(10, len(df)-1)) if len(df) > 1 else pd.DataFrame()
|
| 130 |
+
if not other_medicines.empty:
|
| 131 |
+
system_prompt += "Here's a sample of other medicines in the dataset for comparison:\n"
|
| 132 |
+
for idx, row in other_medicines.iterrows():
|
| 133 |
+
system_prompt += f"- {row['name']}: Chemical Class: {row['Chemical Class']}, Therapeutic Class: {row['Therapeutic Class']}, Action Class: {row['Action Class']}\n"
|
| 134 |
+
|
| 135 |
+
# Initialize Together client with the API key
|
| 136 |
+
client = Together(api_key=api_key)
|
| 137 |
+
|
| 138 |
+
# Make API call
|
| 139 |
+
response = client.chat.completions.create(
|
| 140 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
|
| 141 |
+
messages=[
|
| 142 |
+
{
|
| 143 |
+
"role": "system",
|
| 144 |
+
"content": system_prompt
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"role": "user",
|
| 148 |
+
"content": f"Please recommend alternatives for {medicine_name} based on the dataset. Include detailed information about each alternative."
|
| 149 |
+
}
|
| 150 |
+
],
|
| 151 |
+
max_tokens=2000
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Return the generated recommendations
|
| 155 |
+
return response.choices[0].message.content
|
| 156 |
|
| 157 |
+
except Exception as e:
|
| 158 |
+
return f"Error: {str(e)}"
|
| 159 |
+
|
| 160 |
+
def send_medicine_to_recommender(api_key, medicine_names, csv_file=None):
|
| 161 |
+
"""
|
| 162 |
+
Takes medicine names extracted from prescription and gets recommendations
|
| 163 |
+
"""
|
| 164 |
+
if not medicine_names or medicine_names.startswith("Error") or medicine_names.startswith("Please"):
|
| 165 |
+
return "Please extract valid medicine names first"
|
| 166 |
+
|
| 167 |
+
# Extract the first medicine name from the list (assuming it's the first line or first item)
|
| 168 |
+
medicine_lines = medicine_names.strip().split('\n')
|
| 169 |
+
if not medicine_lines:
|
| 170 |
+
return "No valid medicine name found in extraction results"
|
| 171 |
+
|
| 172 |
+
# Get the first medicine name (remove any bullet points or numbers)
|
| 173 |
+
first_medicine = medicine_lines[0]
|
| 174 |
+
# Clean up the medicine name (remove bullets, numbers, etc.)
|
| 175 |
+
first_medicine = first_medicine.lstrip('•-*0123456789. ').strip()
|
| 176 |
+
|
| 177 |
+
# Check if we have a valid medicine name
|
| 178 |
+
if not first_medicine:
|
| 179 |
+
return "Could not identify a valid medicine name from extraction"
|
| 180 |
+
|
| 181 |
+
# Call the recommend medicine function with the first extracted medicine
|
| 182 |
+
return recommend_medicine(api_key, first_medicine, csv_file)
|
| 183 |
+
|
| 184 |
+
# Create Gradio interface with tabs for both functionalities
|
| 185 |
+
with gr.Blocks(title="Medicine Assistant") as app:
|
| 186 |
+
gr.Markdown("# Medicine Assistant")
|
| 187 |
+
gr.Markdown("This application helps you extract medicine names from prescriptions and find alternative medicines.")
|
| 188 |
+
|
| 189 |
+
# API key input (shared between tabs)
|
| 190 |
+
api_key_input = gr.Textbox(
|
| 191 |
+
label="Together API Key",
|
| 192 |
+
placeholder="Enter your Together API key here...",
|
| 193 |
+
type="password"
|
| 194 |
)
|
| 195 |
|
| 196 |
+
with gr.Tabs():
|
| 197 |
+
with gr.Tab("Prescription Medicine Extractor"):
|
| 198 |
+
gr.Markdown("## Prescription Medicine Extractor")
|
| 199 |
+
gr.Markdown("Upload a prescription image to extract medicine names using Together AI's Llama-Vision-Free model.")
|
| 200 |
+
|
| 201 |
+
with gr.Row():
|
| 202 |
+
with gr.Column():
|
| 203 |
+
image_input = gr.Image(type="filepath", label="Upload Prescription Image")
|
| 204 |
+
extract_btn = gr.Button("Extract Medicines")
|
| 205 |
+
recommend_from_extract_btn = gr.Button("Get Recommendations for First Medicine")
|
| 206 |
+
|
| 207 |
+
with gr.Column():
|
| 208 |
+
extracted_output = gr.Textbox(label="Extracted Medicines", lines=10)
|
| 209 |
+
recommendation_from_extract_output = gr.Markdown(label="Recommendations")
|
| 210 |
+
|
| 211 |
+
# Connect the buttons to functions
|
| 212 |
+
extract_btn.click(
|
| 213 |
+
fn=extract_medicines,
|
| 214 |
+
inputs=[api_key_input, image_input],
|
| 215 |
+
outputs=extracted_output
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
recommend_from_extract_btn.click(
|
| 219 |
+
fn=send_medicine_to_recommender,
|
| 220 |
+
inputs=[api_key_input, extracted_output, None], # Pass None as csv_file to use default
|
| 221 |
+
outputs=recommendation_from_extract_output
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
gr.Markdown("""
|
| 225 |
+
### How to use:
|
| 226 |
+
1. Enter your Together API key
|
| 227 |
+
2. Upload a clear image of a prescription
|
| 228 |
+
3. Click 'Extract Medicines' to see the identified medicines
|
| 229 |
+
4. Optionally click 'Get Recommendations for First Medicine' to find alternatives
|
| 230 |
+
|
| 231 |
+
### Note:
|
| 232 |
+
- Your API key is used only for the current session
|
| 233 |
+
- For best results, ensure the prescription image is clear and readable
|
| 234 |
+
""")
|
| 235 |
+
|
| 236 |
+
with gr.Tab("Medicine Alternative Recommender"):
|
| 237 |
+
gr.Markdown("## Medicine Alternative Recommender")
|
| 238 |
+
gr.Markdown("This tool recommends alternative medicines based on an input medicine name using the Together API.")
|
| 239 |
+
|
| 240 |
+
with gr.Row():
|
| 241 |
+
with gr.Column():
|
| 242 |
+
medicine_name = gr.Textbox(
|
| 243 |
+
label="Medicine Name",
|
| 244 |
+
placeholder="Enter a medicine name exactly as it appears in the dataset"
|
| 245 |
+
)
|
| 246 |
+
csv_file = gr.File(
|
| 247 |
+
label="Upload Medicine CSV (Optional)",
|
| 248 |
+
file_types=[".csv"],
|
| 249 |
+
type="file"
|
| 250 |
+
)
|
| 251 |
+
gr.Markdown("If no CSV is uploaded, the app will use the default 'medicine_dataset.csv' file.")
|
| 252 |
+
|
| 253 |
+
submit_btn = gr.Button("Get Recommendations", variant="primary")
|
| 254 |
+
|
| 255 |
+
with gr.Column():
|
| 256 |
+
recommendation_output = gr.Markdown(label="Recommendations")
|
| 257 |
+
|
| 258 |
+
submit_btn.click(
|
| 259 |
+
recommend_medicine,
|
| 260 |
+
inputs=[api_key_input, medicine_name, csv_file],
|
| 261 |
+
outputs=recommendation_output
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
gr.Markdown("""
|
| 265 |
+
## How to use this tool:
|
| 266 |
+
1. Enter your Together API key (same key used across the application)
|
| 267 |
+
2. Enter a medicine name **exactly as it appears** in the CSV file
|
| 268 |
+
3. Optionally upload a custom medicine dataset CSV file (otherwise the default medicine_dataset.csv will be used)
|
| 269 |
+
4. Click "Get Recommendations" to see alternatives
|
| 270 |
+
|
| 271 |
+
### CSV Format Requirements:
|
| 272 |
+
The app expects a CSV with these columns:
|
| 273 |
+
- `name`: Medicine name
|
| 274 |
+
- `substitute0` through `substitute4`: Potential substitute medicines
|
| 275 |
+
- `sideEffect0` through `sideEffect41`: Possible side effects
|
| 276 |
+
- `use0` through `use4`: Medical uses
|
| 277 |
+
- `Chemical Class`: The chemical classification
|
| 278 |
+
- `Habit Forming`: Whether the medicine is habit-forming
|
| 279 |
+
- `Therapeutic Class`: The therapeutic classification
|
| 280 |
+
- `Action Class`: How the medicine works
|
| 281 |
+
""")
|
| 282 |
+
|
| 283 |
gr.Markdown("""
|
| 284 |
+
## About This Application
|
| 285 |
+
|
| 286 |
+
This Medicine Assistant application combines two powerful tools:
|
| 287 |
+
|
| 288 |
+
1. **Prescription Medicine Extractor**: Uses computer vision AI to identify medicine names from prescription images
|
| 289 |
+
2. **Medicine Alternative Recommender**: Provides detailed information about alternative medications
|
| 290 |
+
|
| 291 |
+
Both tools utilize the Together AI platform for advanced AI capabilities. Your API key is not stored and is only used to make API calls during your active session.
|
| 292 |
+
|
| 293 |
+
### Important Note
|
| 294 |
+
|
| 295 |
+
This application is for informational purposes only. Always consult with a healthcare professional before making any changes to your medication regimen.
|
| 296 |
""")
|
| 297 |
|
| 298 |
# Launch the app
|