File size: 22,262 Bytes
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
ae3d41c
 
 
 
 
 
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0bb699
 
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e77c61
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad429c0
c74b017
ad429c0
c74b017
 
ad429c0
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fad15cc
 
c74b017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from sentence_transformers import SentenceTransformer, CrossEncoder
from datasets import load_dataset
import numpy as np
import pandas as pd
import time
from tqdm import tqdm
import os, pickle
import gradio as gr
from gradio_client import Client
from math import log2


os.environ.setdefault("HF_HOME", "/app/.cache")
os.environ.setdefault("HF_HUB_CACHE", "/app/.cache/hub")
os.environ.setdefault("HF_DATASETS_CACHE", "/app/.cache/datasets")
os.environ.setdefault("TRANSFORMERS_CACHE", "/app/.cache/transformers")

# =====================
# PARAMETERS
# =====================
retrieval_n = 50
num_queries = 10
docs_n = 100000
batch_size = 1000
embedding_models = ["all-MiniLM-L6-v2"]
rerank_models = [
    "cross-encoder/ms-marco-MiniLM-L-6-v2",
    "cross-encoder/ms-marco-TinyBERT-L-6",
    #"cross-encoder/nli-deberta-v3-base-biomed",     # biomedical NLI fine-tune
    #"ncbi/MedCPT-Cross-Encoder-msmarco"             # biomedical passage reranker
]

collection_name = "trec_covid"
qdrant_url = os.getenv("QDRANT_URL", "http://localhost:6333")
k_values = [1, 3, 5, 10, 20]

# =====================
# LOAD DATA
# =====================
print("Loading datasets...")
corpus = load_dataset("BeIR/trec-covid", "corpus")
queries = load_dataset("BeIR/trec-covid", "queries")
qrels = load_dataset("BeIR/trec-covid-qrels", split='test')

print(f"Preparing corpus dict from first {docs_n} docs...")
corpus_docs = corpus['corpus'][:docs_n]
corpus_dict= {}
for i in tqdm(range(len(corpus_docs['_id'])), desc="Corpus dict build"):
    corpus_dict[corpus_docs['_id'][i]] = corpus_docs['text'][i]
doc_ids_set = set(corpus_dict.keys())

print("Building qrels dictionary...")
qrels_dict = {}
for row in tqdm(qrels, desc="Processing qrels"):
    qid = int(row['query-id'])
    if qid not in qrels_dict:
        qrels_dict[qid] = {}
    if row['corpus-id'] in doc_ids_set:
        qrels_dict[qid][row['corpus-id']] = int(row['score'])

filtered_qids = [qid for qid in qrels_dict.keys() if len(qrels_dict[qid]) > 0][:num_queries]

print(f"Filtering and loading {len(filtered_qids)} queries...")
queries_list = []
for qid in tqdm(filtered_qids, desc="Loading queries"):
    filtered_query = queries['queries'].filter(lambda x: x['_id'] == str(qid))
    if len(filtered_query) > 0:
        queries_list.append((qid, filtered_query[0]['text']))

avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 2]) for rel in qrels_dict.values()])
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")


# =====================
# METRICS FUNCTIONS
# =====================
def recall_at_k(relevant, retrieved, k):
    relevant_set = set(relevant.keys())
    retrieved_k = set(retrieved[:k])
    return len(relevant_set.intersection(retrieved_k)) / len(relevant_set) if relevant_set else 0

def precision_at_k(relevant, retrieved, k, rel_threshold=1):
    relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
    retrieved_k = retrieved[:k]
    return sum(1 for doc in retrieved_k if doc in relevant_set) / k

def dcg_at_k(rels, k):
    return sum((2**rel - 1) / np.log2(idx + 2) for idx, rel in enumerate(rels[:k]))

def ndcg_at_k(relevant_scores, retrieved_ids, k):
    retrieved_rels = [relevant_scores.get(doc_id, 0) for doc_id in retrieved_ids[:k]]
    ideal_rels = sorted(relevant_scores.values(), reverse=True)[:k]
    ideal_dcg = dcg_at_k(ideal_rels, k)
    actual_dcg = dcg_at_k(retrieved_rels, k)
    return actual_dcg / ideal_dcg if ideal_dcg > 0 else 0

def average_precision(relevant, retrieved, rel_threshold=1):
    relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
    hits = 0
    sum_prec = 0.0
    for i, doc_id in enumerate(retrieved):
        if doc_id in relevant_set:
            hits += 1
            sum_prec += hits / (i + 1)
    return sum_prec / len(relevant_set) if relevant_set else 0

def reciprocal_rank(relevant, retrieved, rel_threshold=1):
    relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
    for i, doc_id in enumerate(retrieved):
        if doc_id in relevant_set:
            return 1 / (i + 1)
    return 0

def success_at_k(relevant, retrieved, k, rel_threshold=1):
    relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
    return int(any(doc in relevant_set for doc in retrieved[:k]))

# =====================
# METRICS EVALUATION FUNCTION
# =====================
def evaluate_metrics(results_data, qrels_dict, k_values):
    rows = []
    for model_name, data in results_data.items():
        recalls = {k: [] for k in k_values}
        precisions = {k: [] for k in k_values}
        ndcgs = {k: [] for k in k_values}
        success = {k: [] for k in k_values}
        maps = []
        mrrs = []
        retrieval_times = data.get("retrieval_times", [])
        rerank_times = data.get("rerank_times", [])
        
        print(f"Evaluating metrics for {model_name} ...")
        for i, (qid, retrieved, rerank_scores) in enumerate(tqdm(zip(data["qids"], data["retrieved"], data["rerank_scores"]), total=len(data["qids"]), desc=f"Metrics {model_name}")):
            relevant = qrels_dict.get(qid, {})
            if rerank_scores:
                sorted_docs = [doc for doc, score in sorted(zip(retrieved, rerank_scores), key=lambda x: x[1], reverse=True)]
            else:
                sorted_docs = retrieved
            
            for k in k_values:
                recalls[k].append(recall_at_k(relevant, sorted_docs, k))
                precisions[k].append(precision_at_k(relevant, sorted_docs, k))
                ndcgs[k].append(ndcg_at_k(relevant, sorted_docs, k))
                success[k].append(success_at_k(relevant, sorted_docs, k))
            
            maps.append(average_precision(relevant, sorted_docs))
            mrrs.append(reciprocal_rank(relevant, sorted_docs))
        
        avg_retrieval_time = np.mean(retrieval_times) if retrieval_times else 0
        avg_rerank_time = np.mean(rerank_times) if rerank_times else 0
        
        row = {"Model": model_name}
        for k in k_values:
            row[f"Recall@{k}"] = round(np.mean(recalls[k]), 4)
            row[f"Precision@{k}"] = round(np.mean(precisions[k]), 4)
            row[f"NDCG@{k}"] = round(np.mean(ndcgs[k]), 4)
            row[f"Success@{k}"] = round(np.mean(success[k]), 4)
        row["MAP"] = round(np.mean(maps), 4)
        row["MRR"] = round(np.mean(mrrs), 4)
        row["AvgRetrievalTime(s)"] = round(avg_retrieval_time, 4)
        row["AvgRerankTime(s)"] = round(avg_rerank_time, 4)
        rows.append(row)
    return pd.DataFrame(rows)

# =====================
# Encoding + Upload
# =====================

def encode_and_upload():
    client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))

    for embedding_model in embedding_models:
        print(f"Encoding corpus with embedding model {embedding_model} ...")
        embedder = SentenceTransformer(embedding_model)

        corpus_ids = list(doc_ids_set)
        corpus_texts = [corpus_dict[doc_id] for doc_id in tqdm(corpus_ids, desc="Encoding corpus texts")]

        # Normalize embeddings for cosine similarity
        vectors = embedder.encode(corpus_texts, normalize_embeddings=True).tolist()

        global doc_id_to_int, int_to_doc_id
        doc_id_to_int = {doc_id: i for i, doc_id in enumerate(corpus_ids)}
        int_to_doc_id = {i: doc_id for doc_id, i in doc_id_to_int.items()}

        # Create collection only if it doesn't exist
        if not client.collection_exists(collection_name):
            print(f"Creating collection '{collection_name}' ...")
            client.create_collection(
                collection_name=collection_name,
                vectors_config=VectorParams(size=len(vectors[0]), distance=Distance.COSINE)
            )
        else:
            print(f"Collection '{collection_name}' already exists. Skipping creation.")

        # Check already uploaded points
        existing_ids = set()
        scroll_res, _ = client.scroll(collection_name=collection_name, with_payload=False, limit=100000)
        existing_ids = {point.id for point in scroll_res}
        print(f"Already stored {len(existing_ids)} points in '{collection_name}'.")

        # Prepare points for only missing IDs
        new_points = []
        for doc_id, vec in zip(corpus_ids, vectors):
            pid = doc_id_to_int[doc_id]
            if pid not in existing_ids:
                new_points.append({"id": pid, "vector": vec, "payload": {"text": corpus_dict[doc_id]}})

        print(f"Uploading {len(new_points)} new points to collection '{collection_name}' ...")
        for i in tqdm(range(0, len(new_points), batch_size), desc="Upserting points in batches"):
            batch = new_points[i:i + batch_size]
            client.upsert(collection_name=collection_name, points=batch)

    # Preview first 5 stored docs
    preview, _ = client.scroll(collection_name=collection_name, limit=5, with_payload=True)
    print("\nPreview of stored points:")
    for point in preview:
        print(f"ID: {point.id} | Text: {point.payload['text'][:80]}...")

    return embedder

# =====================
# Baseline Retrieval (No rerank)
# =====================
def run_retrieval(embedder):
    client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
    retrieval_times = []
    retrieved_docs_list = []
    rerank_scores_list = []
    qids = []

    print("Running baseline retrieval ...")
    for qid, qtext in tqdm(queries_list, desc="Baseline retrieval queries"):
        q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]

        start_time = time.time()
        search_result = client.query_points(
            collection_name=collection_name,
            query=q_vec,
            limit=retrieval_n,
            with_payload=True
        )
        retrieval_time = time.time() - start_time
        retrieval_times.append(retrieval_time)

        retrieved_ids_int = [hit.id for hit in search_result.points]
        retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]

        qids.append(qid)
        retrieved_docs_list.append(retrieved_ids)
        rerank_scores_list.append([])

    results = {
        "qids": qids,
        "retrieved": retrieved_docs_list,
        "rerank_scores": rerank_scores_list,
        "retrieval_times": retrieval_times,
        "rerank_times": []
    }
    return results

# =====================
# Retrieval + Rerank
# =====================
def run_rerank(embedder):
    client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
    results_data = {}

    for rerank_model in rerank_models:
        print(f"Running retrieval + reranking with model {rerank_model} ...")
        reranker = CrossEncoder(rerank_model, trust_remote_code=True)
        retrieval_times = []
        rerank_times = []
        retrieved_docs_list = []
        rerank_scores_list = []
        qids = []

        for qid, qtext in tqdm(queries_list, desc=f"Retrieval + rerank with {rerank_model}"):
            q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]

            start_retrieval = time.time()
            search_result = client.query_points(
                collection_name=collection_name,
                query=q_vec,
                limit=retrieval_n,
                with_payload=True
            )
            retrieval_time = time.time() - start_retrieval
            retrieval_times.append(retrieval_time)

            retrieved_ids_int = [hit.id for hit in search_result.points]
            retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]
            retrieved_texts = [hit.payload['text'] for hit in search_result.points]

            start_rerank = time.time()
            pairs = [(qtext, txt) for txt in retrieved_texts]
            rerank_scores = reranker.predict(pairs)
            rerank_time = time.time() - start_rerank
            rerank_times.append(rerank_time)

            qids.append(qid)
            retrieved_docs_list.append(retrieved_ids)
            rerank_scores_list.append(list(rerank_scores))

        results_data[rerank_model] = {
            "qids": qids,
            "retrieved": retrieved_docs_list,
            "rerank_scores": rerank_scores_list,
            "retrieval_times": retrieval_times,
            "rerank_times": rerank_times
        }

    return results_data


# =====================
# MAIN RUN
# =====================
if __name__ == "__main__":
    embedder = encode_and_upload()

    baseline_results = run_retrieval(embedder)
    rerank_results = run_rerank(embedder)

    all_results = {"Qdrant Baseline": baseline_results}
    all_results.update(rerank_results)

    df_metrics = evaluate_metrics(all_results, qrels_dict, k_values)

        
    # Prepare column groups
    recall_cols = ["Model"] + [f"Recall@{k}" for k in k_values] + [f"Precision@{k}" for k in k_values]
    ndcg_success_cols = ["Model"] + [f"NDCG@{k}" for k in k_values] + [f"Success@{k}" for k in k_values]
    summary_cols = ["Model", "MAP", "MRR", "AvgRetrievalTime(s)", "AvgRerankTime(s)"]
    
    print("\n--- Recall and Precision ---")
    print(df_metrics[recall_cols].to_string(index=False))
    
    print("\n--- NDCG and Success ---")
    print(df_metrics[ndcg_success_cols].to_string(index=False))
    
    print("\n--- Summary Metrics and Timing ---")
    print(df_metrics[summary_cols].to_string(index=False))


avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 1]) for rel in qrels_dict.values()])
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")


# --------------------
# CONFIG
# --------------------
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
COLLECTION_NAME = "trec_covid"
EMBEDDING_MODEL = "all-MiniLM-L6-v2"
MAPPING_FILE = "int_to_doc_id.pkl"
# --------------------
# DATA
# --------------------
corpus = load_dataset("BeIR/trec-covid", "corpus")
queries = load_dataset("BeIR/trec-covid", "queries")
qrels = load_dataset("BeIR/trec-covid-qrels", split="test")

qrels_dict = {}
for row in qrels:
    qid = int(row["query-id"])
    qrels_dict.setdefault(qid, {})[row["corpus-id"]] = int(row["score"])

qds = queries["queries"]
max_dd = min(200, len(qds))
_qids = qds["_id"][:max_dd]
_texts = qds["text"][:max_dd]
trec_queries = [(f"{_qids[i]}: {_texts[i][:80]}", int(_qids[i]), _texts[i]) for i in range(max_dd)]
label2qt = {lab: (qid, txt) for (lab, qid, txt) in trec_queries}

# --------------------
# ID MAP
# --------------------
if not os.path.exists(MAPPING_FILE):
    raise FileNotFoundError(f"Missing {MAPPING_FILE}. Save it during indexing.")
with open(MAPPING_FILE, "rb") as f:
    int_to_doc_id = pickle.load(f)
INDEXED_DOC_IDS = set(int_to_doc_id.values())

# --------------------
# Lazy singletons
# --------------------
_client = None
_embedder = None
_rerankers = {}
def get_client():
    global _client
    if _client is None:
        _client = QdrantClient(url=QDRANT_URL, api_key=os.getenv("QDRANT_API_KEY"))
    return _client

def get_embedder():
    global _embedder
    if _embedder is None:
        _embedder = SentenceTransformer(EMBEDDING_MODEL)
    return _embedder

def get_reranker(model_name):
    if model_name not in _rerankers:
        _rerankers[model_name] = CrossEncoder(model_name, trust_remote_code=True)
    return _rerankers[model_name]

# --------------------
# Metrics
# --------------------
def recall_at_k(relevant_ids_set, retrieved_ids, k):
    if not relevant_ids_set:
        return None
    return len(relevant_ids_set.intersection(retrieved_ids[:k])) / len(relevant_ids_set)

def precision_at_k(relevant_ids_set, retrieved_ids, k):
    if k == 0:
        return None
    return len(relevant_ids_set.intersection(retrieved_ids[:k])) / k

def hit_at_k(relevant_ids_set, retrieved_ids, k):
    return int(len(relevant_ids_set.intersection(retrieved_ids[:k])) > 0)

def ndcg_at_k(relevant_ids_scores, retrieved_ids, k):
    dcg = 0.0
    idcg = 0.0
    for i, doc_id in enumerate(retrieved_ids[:k]):
        rel = relevant_ids_scores.get(doc_id, 0)
        if rel > 0:
            dcg += (2**rel - 1) / log2(i+2)
    sorted_rels = sorted(relevant_ids_scores.values(), reverse=True)[:k]
    for i, rel in enumerate(sorted_rels):
        if rel > 0:
            idcg += (2**rel - 1) / log2(i+2)
    return dcg / idcg if idcg > 0 else None

def evaluate_model(relevant_in_collection, relevant_scores_in_collection, doc_order, k):
    return {
        "Recall@k": round(recall_at_k(relevant_in_collection, doc_order, k), 4),
        "Precision@k": round(precision_at_k(relevant_in_collection, doc_order, k), 4),
        "Hit@k": hit_at_k(relevant_in_collection, doc_order, k),
        "NDCG@k": None if ndcg_at_k(relevant_scores_in_collection, doc_order, k) is None else round(ndcg_at_k(relevant_scores_in_collection, doc_order, k), 4),
    }

# --------------------
# Core
# --------------------
def run_demo(
    query_text, retrieval_n, top_k, use_trec, trec_label, rel_threshold,
    use_baseline, *selected_rerankers
):
    client = get_client()
    embedder = get_embedder()

    qid = None
    if use_trec and trec_label:
        qid, query_text = label2qt[trec_label]

    if not query_text or not query_text.strip():
        return pd.DataFrame(), {"Note": "Empty query."}

    q_vec = embedder.encode([query_text], normalize_embeddings=True)[0]
    res = client.query_points(
        collection_name=COLLECTION_NAME,
        query=q_vec,
        limit=int(retrieval_n),
        with_payload=True
    )
    points = getattr(res, "points", res)

    cand_docs, cand_texts, cand_qdrant_scores = [], [], []
    for p in points:
        payload = getattr(p, "payload", {}) or {}
        pid = int(getattr(p, "id"))
        doc_id = payload.get("doc_id", int_to_doc_id.get(pid, str(pid)))
        cand_docs.append(doc_id)
        cand_texts.append(payload.get("text", ""))
        cand_qdrant_scores.append(getattr(p, "score", None))

    cols = {
        "rank": list(range(1, int(top_k)+1)),
        "doc_id": [],
        "score_qdrant": [],
        "text_snippet": [],
    }
    reranker_scores = {}

    for model_name, is_selected in zip(rerank_models, selected_rerankers):
        if is_selected:
            rr = get_reranker(model_name)
            reranker_scores[model_name] = rr.predict([(query_text, t) for t in cand_texts])

    for i in range(min(int(top_k), len(cand_docs))):
        cols["doc_id"].append(cand_docs[i])
        cols["score_qdrant"].append(cand_qdrant_scores[i])
        txt = cand_texts[i]
        cols["text_snippet"].append(txt[:300] + ("…" if len(txt) > 300 else ""))
        for model_name in reranker_scores:
            col_key = f"score_{model_name.split('/')[-1]}"
            if col_key not in cols:
                cols[col_key] = []
            cols[col_key].append(float(reranker_scores[model_name][i]))

    df = pd.DataFrame(cols)

    metrics = {}
    if qid is not None:
        rels = qrels_dict.get(qid, {})
        relevant_all = {d for d, s in rels.items() if s >= rel_threshold}
        relevant_in_collection = relevant_all & INDEXED_DOC_IDS
        relevant_scores_in_collection = {d: s for d, s in rels.items() if d in INDEXED_DOC_IDS}
        ceiling_recall = round(len(relevant_in_collection) / len(relevant_all), 4) if relevant_all else None

        if use_baseline:
            metrics["Qdrant"] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, cand_docs, int(top_k))

        for model_name, is_selected in zip(rerank_models, selected_rerankers):
            if is_selected:
                order = sorted(range(len(cand_docs)), key=lambda i: reranker_scores[model_name][i], reverse=True)
                top_docs = [cand_docs[i] for i in order[:int(top_k)]]
                metrics[model_name] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, top_docs, int(top_k))

        metrics["QueryID"] = int(qid)
        metrics["Relevant>=threshold (all)"] = len(relevant_all)
        metrics["Relevant in collection"] = len(relevant_in_collection)
        metrics["Recall Ceiling (collection)"] = ceiling_recall

    return df, metrics

# --------------------
# UI
# --------------------
with gr.Blocks(title="Qdrant Retrieval Demo") as demo:
    gr.Markdown("### Qdrant Retrieval Demo (TREC-COVID) + Multiple Metrics")

    with gr.Row():
        query_text = gr.Textbox(label="Query (free text)", placeholder="e.g., ACE2 inhibitors and COVID-19", lines=2)
    with gr.Row():
        retrieval_n = gr.Slider(10, 2000, value=50, step=10, label="retrieval_n (candidates from Qdrant)")
        top_k = gr.Slider(1, 500, value=10, step=1, label="top_k (metrics cutoff)")
    with gr.Row():
        use_trec = gr.Checkbox(label="Use a TREC-COVID query", value=True)
        trec_choice = gr.Dropdown(choices=[lab for (lab, _, _) in trec_queries],
                                  value=trec_queries[0][0] if trec_queries else None,
                                  label="Pick TREC-COVID query")
        rel_threshold = gr.Radio(choices=[1, 2], value=1, label="Relevance threshold")

    gr.Markdown("**Models to evaluate:**")
    with gr.Row():
        use_baseline = gr.Checkbox(label="Qdrant baseline", value=True)
        ce_checkboxes = [gr.Checkbox(label=model_name, value=False) for model_name in rerank_models]

    run_btn = gr.Button("Search")
    out_df = gr.Dataframe(label="Retrieved Docs + Scores", wrap=True)
    out_metrics = gr.JSON(label="Metrics (per selected model + ceiling recall)")

    run_btn.click(
        fn=run_demo,
        inputs=[query_text, retrieval_n, top_k, use_trec, trec_choice, rel_threshold,
                use_baseline, *ce_checkboxes],
        outputs=[out_df, out_metrics]
    )
# demo.launch(...)  # disabled for Spaces; see __main__ block below


if __name__ == "__main__":
    try:
        demo  # Gradio Blocks defined in the notebook
    except NameError:
        raise RuntimeError("Could not find `demo`. Ensure your notebook defines `demo = gr.Blocks(...)`.")
    demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))