Spaces:
Runtime error
Runtime error
File size: 22,262 Bytes
c74b017 ae3d41c c74b017 c0bb699 c74b017 8e77c61 c74b017 ad429c0 c74b017 ad429c0 c74b017 ad429c0 c74b017 fad15cc c74b017 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from sentence_transformers import SentenceTransformer, CrossEncoder
from datasets import load_dataset
import numpy as np
import pandas as pd
import time
from tqdm import tqdm
import os, pickle
import gradio as gr
from gradio_client import Client
from math import log2
os.environ.setdefault("HF_HOME", "/app/.cache")
os.environ.setdefault("HF_HUB_CACHE", "/app/.cache/hub")
os.environ.setdefault("HF_DATASETS_CACHE", "/app/.cache/datasets")
os.environ.setdefault("TRANSFORMERS_CACHE", "/app/.cache/transformers")
# =====================
# PARAMETERS
# =====================
retrieval_n = 50
num_queries = 10
docs_n = 100000
batch_size = 1000
embedding_models = ["all-MiniLM-L6-v2"]
rerank_models = [
"cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-6",
#"cross-encoder/nli-deberta-v3-base-biomed", # biomedical NLI fine-tune
#"ncbi/MedCPT-Cross-Encoder-msmarco" # biomedical passage reranker
]
collection_name = "trec_covid"
qdrant_url = os.getenv("QDRANT_URL", "http://localhost:6333")
k_values = [1, 3, 5, 10, 20]
# =====================
# LOAD DATA
# =====================
print("Loading datasets...")
corpus = load_dataset("BeIR/trec-covid", "corpus")
queries = load_dataset("BeIR/trec-covid", "queries")
qrels = load_dataset("BeIR/trec-covid-qrels", split='test')
print(f"Preparing corpus dict from first {docs_n} docs...")
corpus_docs = corpus['corpus'][:docs_n]
corpus_dict= {}
for i in tqdm(range(len(corpus_docs['_id'])), desc="Corpus dict build"):
corpus_dict[corpus_docs['_id'][i]] = corpus_docs['text'][i]
doc_ids_set = set(corpus_dict.keys())
print("Building qrels dictionary...")
qrels_dict = {}
for row in tqdm(qrels, desc="Processing qrels"):
qid = int(row['query-id'])
if qid not in qrels_dict:
qrels_dict[qid] = {}
if row['corpus-id'] in doc_ids_set:
qrels_dict[qid][row['corpus-id']] = int(row['score'])
filtered_qids = [qid for qid in qrels_dict.keys() if len(qrels_dict[qid]) > 0][:num_queries]
print(f"Filtering and loading {len(filtered_qids)} queries...")
queries_list = []
for qid in tqdm(filtered_qids, desc="Loading queries"):
filtered_query = queries['queries'].filter(lambda x: x['_id'] == str(qid))
if len(filtered_query) > 0:
queries_list.append((qid, filtered_query[0]['text']))
avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 2]) for rel in qrels_dict.values()])
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")
# =====================
# METRICS FUNCTIONS
# =====================
def recall_at_k(relevant, retrieved, k):
relevant_set = set(relevant.keys())
retrieved_k = set(retrieved[:k])
return len(relevant_set.intersection(retrieved_k)) / len(relevant_set) if relevant_set else 0
def precision_at_k(relevant, retrieved, k, rel_threshold=1):
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
retrieved_k = retrieved[:k]
return sum(1 for doc in retrieved_k if doc in relevant_set) / k
def dcg_at_k(rels, k):
return sum((2**rel - 1) / np.log2(idx + 2) for idx, rel in enumerate(rels[:k]))
def ndcg_at_k(relevant_scores, retrieved_ids, k):
retrieved_rels = [relevant_scores.get(doc_id, 0) for doc_id in retrieved_ids[:k]]
ideal_rels = sorted(relevant_scores.values(), reverse=True)[:k]
ideal_dcg = dcg_at_k(ideal_rels, k)
actual_dcg = dcg_at_k(retrieved_rels, k)
return actual_dcg / ideal_dcg if ideal_dcg > 0 else 0
def average_precision(relevant, retrieved, rel_threshold=1):
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
hits = 0
sum_prec = 0.0
for i, doc_id in enumerate(retrieved):
if doc_id in relevant_set:
hits += 1
sum_prec += hits / (i + 1)
return sum_prec / len(relevant_set) if relevant_set else 0
def reciprocal_rank(relevant, retrieved, rel_threshold=1):
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
for i, doc_id in enumerate(retrieved):
if doc_id in relevant_set:
return 1 / (i + 1)
return 0
def success_at_k(relevant, retrieved, k, rel_threshold=1):
relevant_set = set(doc for doc, score in relevant.items() if score >= rel_threshold)
return int(any(doc in relevant_set for doc in retrieved[:k]))
# =====================
# METRICS EVALUATION FUNCTION
# =====================
def evaluate_metrics(results_data, qrels_dict, k_values):
rows = []
for model_name, data in results_data.items():
recalls = {k: [] for k in k_values}
precisions = {k: [] for k in k_values}
ndcgs = {k: [] for k in k_values}
success = {k: [] for k in k_values}
maps = []
mrrs = []
retrieval_times = data.get("retrieval_times", [])
rerank_times = data.get("rerank_times", [])
print(f"Evaluating metrics for {model_name} ...")
for i, (qid, retrieved, rerank_scores) in enumerate(tqdm(zip(data["qids"], data["retrieved"], data["rerank_scores"]), total=len(data["qids"]), desc=f"Metrics {model_name}")):
relevant = qrels_dict.get(qid, {})
if rerank_scores:
sorted_docs = [doc for doc, score in sorted(zip(retrieved, rerank_scores), key=lambda x: x[1], reverse=True)]
else:
sorted_docs = retrieved
for k in k_values:
recalls[k].append(recall_at_k(relevant, sorted_docs, k))
precisions[k].append(precision_at_k(relevant, sorted_docs, k))
ndcgs[k].append(ndcg_at_k(relevant, sorted_docs, k))
success[k].append(success_at_k(relevant, sorted_docs, k))
maps.append(average_precision(relevant, sorted_docs))
mrrs.append(reciprocal_rank(relevant, sorted_docs))
avg_retrieval_time = np.mean(retrieval_times) if retrieval_times else 0
avg_rerank_time = np.mean(rerank_times) if rerank_times else 0
row = {"Model": model_name}
for k in k_values:
row[f"Recall@{k}"] = round(np.mean(recalls[k]), 4)
row[f"Precision@{k}"] = round(np.mean(precisions[k]), 4)
row[f"NDCG@{k}"] = round(np.mean(ndcgs[k]), 4)
row[f"Success@{k}"] = round(np.mean(success[k]), 4)
row["MAP"] = round(np.mean(maps), 4)
row["MRR"] = round(np.mean(mrrs), 4)
row["AvgRetrievalTime(s)"] = round(avg_retrieval_time, 4)
row["AvgRerankTime(s)"] = round(avg_rerank_time, 4)
rows.append(row)
return pd.DataFrame(rows)
# =====================
# Encoding + Upload
# =====================
def encode_and_upload():
client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
for embedding_model in embedding_models:
print(f"Encoding corpus with embedding model {embedding_model} ...")
embedder = SentenceTransformer(embedding_model)
corpus_ids = list(doc_ids_set)
corpus_texts = [corpus_dict[doc_id] for doc_id in tqdm(corpus_ids, desc="Encoding corpus texts")]
# Normalize embeddings for cosine similarity
vectors = embedder.encode(corpus_texts, normalize_embeddings=True).tolist()
global doc_id_to_int, int_to_doc_id
doc_id_to_int = {doc_id: i for i, doc_id in enumerate(corpus_ids)}
int_to_doc_id = {i: doc_id for doc_id, i in doc_id_to_int.items()}
# Create collection only if it doesn't exist
if not client.collection_exists(collection_name):
print(f"Creating collection '{collection_name}' ...")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=len(vectors[0]), distance=Distance.COSINE)
)
else:
print(f"Collection '{collection_name}' already exists. Skipping creation.")
# Check already uploaded points
existing_ids = set()
scroll_res, _ = client.scroll(collection_name=collection_name, with_payload=False, limit=100000)
existing_ids = {point.id for point in scroll_res}
print(f"Already stored {len(existing_ids)} points in '{collection_name}'.")
# Prepare points for only missing IDs
new_points = []
for doc_id, vec in zip(corpus_ids, vectors):
pid = doc_id_to_int[doc_id]
if pid not in existing_ids:
new_points.append({"id": pid, "vector": vec, "payload": {"text": corpus_dict[doc_id]}})
print(f"Uploading {len(new_points)} new points to collection '{collection_name}' ...")
for i in tqdm(range(0, len(new_points), batch_size), desc="Upserting points in batches"):
batch = new_points[i:i + batch_size]
client.upsert(collection_name=collection_name, points=batch)
# Preview first 5 stored docs
preview, _ = client.scroll(collection_name=collection_name, limit=5, with_payload=True)
print("\nPreview of stored points:")
for point in preview:
print(f"ID: {point.id} | Text: {point.payload['text'][:80]}...")
return embedder
# =====================
# Baseline Retrieval (No rerank)
# =====================
def run_retrieval(embedder):
client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
retrieval_times = []
retrieved_docs_list = []
rerank_scores_list = []
qids = []
print("Running baseline retrieval ...")
for qid, qtext in tqdm(queries_list, desc="Baseline retrieval queries"):
q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]
start_time = time.time()
search_result = client.query_points(
collection_name=collection_name,
query=q_vec,
limit=retrieval_n,
with_payload=True
)
retrieval_time = time.time() - start_time
retrieval_times.append(retrieval_time)
retrieved_ids_int = [hit.id for hit in search_result.points]
retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]
qids.append(qid)
retrieved_docs_list.append(retrieved_ids)
rerank_scores_list.append([])
results = {
"qids": qids,
"retrieved": retrieved_docs_list,
"rerank_scores": rerank_scores_list,
"retrieval_times": retrieval_times,
"rerank_times": []
}
return results
# =====================
# Retrieval + Rerank
# =====================
def run_rerank(embedder):
client = QdrantClient(url=qdrant_url, api_key=os.getenv("QDRANT_API_KEY"))
results_data = {}
for rerank_model in rerank_models:
print(f"Running retrieval + reranking with model {rerank_model} ...")
reranker = CrossEncoder(rerank_model, trust_remote_code=True)
retrieval_times = []
rerank_times = []
retrieved_docs_list = []
rerank_scores_list = []
qids = []
for qid, qtext in tqdm(queries_list, desc=f"Retrieval + rerank with {rerank_model}"):
q_vec = embedder.encode([qtext], normalize_embeddings=True)[0]
start_retrieval = time.time()
search_result = client.query_points(
collection_name=collection_name,
query=q_vec,
limit=retrieval_n,
with_payload=True
)
retrieval_time = time.time() - start_retrieval
retrieval_times.append(retrieval_time)
retrieved_ids_int = [hit.id for hit in search_result.points]
retrieved_ids = [int_to_doc_id[i] for i in retrieved_ids_int]
retrieved_texts = [hit.payload['text'] for hit in search_result.points]
start_rerank = time.time()
pairs = [(qtext, txt) for txt in retrieved_texts]
rerank_scores = reranker.predict(pairs)
rerank_time = time.time() - start_rerank
rerank_times.append(rerank_time)
qids.append(qid)
retrieved_docs_list.append(retrieved_ids)
rerank_scores_list.append(list(rerank_scores))
results_data[rerank_model] = {
"qids": qids,
"retrieved": retrieved_docs_list,
"rerank_scores": rerank_scores_list,
"retrieval_times": retrieval_times,
"rerank_times": rerank_times
}
return results_data
# =====================
# MAIN RUN
# =====================
if __name__ == "__main__":
embedder = encode_and_upload()
baseline_results = run_retrieval(embedder)
rerank_results = run_rerank(embedder)
all_results = {"Qdrant Baseline": baseline_results}
all_results.update(rerank_results)
df_metrics = evaluate_metrics(all_results, qrels_dict, k_values)
# Prepare column groups
recall_cols = ["Model"] + [f"Recall@{k}" for k in k_values] + [f"Precision@{k}" for k in k_values]
ndcg_success_cols = ["Model"] + [f"NDCG@{k}" for k in k_values] + [f"Success@{k}" for k in k_values]
summary_cols = ["Model", "MAP", "MRR", "AvgRetrievalTime(s)", "AvgRerankTime(s)"]
print("\n--- Recall and Precision ---")
print(df_metrics[recall_cols].to_string(index=False))
print("\n--- NDCG and Success ---")
print(df_metrics[ndcg_success_cols].to_string(index=False))
print("\n--- Summary Metrics and Timing ---")
print(df_metrics[summary_cols].to_string(index=False))
avg_relevant_docs = np.mean([len([doc for doc, score in rel.items() if score >= 1]) for rel in qrels_dict.values()])
print(f"Average relevant docs per query: {avg_relevant_docs:.2f}")
# --------------------
# CONFIG
# --------------------
QDRANT_URL = os.getenv("QDRANT_URL", "http://localhost:6333")
COLLECTION_NAME = "trec_covid"
EMBEDDING_MODEL = "all-MiniLM-L6-v2"
MAPPING_FILE = "int_to_doc_id.pkl"
# --------------------
# DATA
# --------------------
corpus = load_dataset("BeIR/trec-covid", "corpus")
queries = load_dataset("BeIR/trec-covid", "queries")
qrels = load_dataset("BeIR/trec-covid-qrels", split="test")
qrels_dict = {}
for row in qrels:
qid = int(row["query-id"])
qrels_dict.setdefault(qid, {})[row["corpus-id"]] = int(row["score"])
qds = queries["queries"]
max_dd = min(200, len(qds))
_qids = qds["_id"][:max_dd]
_texts = qds["text"][:max_dd]
trec_queries = [(f"{_qids[i]}: {_texts[i][:80]}", int(_qids[i]), _texts[i]) for i in range(max_dd)]
label2qt = {lab: (qid, txt) for (lab, qid, txt) in trec_queries}
# --------------------
# ID MAP
# --------------------
if not os.path.exists(MAPPING_FILE):
raise FileNotFoundError(f"Missing {MAPPING_FILE}. Save it during indexing.")
with open(MAPPING_FILE, "rb") as f:
int_to_doc_id = pickle.load(f)
INDEXED_DOC_IDS = set(int_to_doc_id.values())
# --------------------
# Lazy singletons
# --------------------
_client = None
_embedder = None
_rerankers = {}
def get_client():
global _client
if _client is None:
_client = QdrantClient(url=QDRANT_URL, api_key=os.getenv("QDRANT_API_KEY"))
return _client
def get_embedder():
global _embedder
if _embedder is None:
_embedder = SentenceTransformer(EMBEDDING_MODEL)
return _embedder
def get_reranker(model_name):
if model_name not in _rerankers:
_rerankers[model_name] = CrossEncoder(model_name, trust_remote_code=True)
return _rerankers[model_name]
# --------------------
# Metrics
# --------------------
def recall_at_k(relevant_ids_set, retrieved_ids, k):
if not relevant_ids_set:
return None
return len(relevant_ids_set.intersection(retrieved_ids[:k])) / len(relevant_ids_set)
def precision_at_k(relevant_ids_set, retrieved_ids, k):
if k == 0:
return None
return len(relevant_ids_set.intersection(retrieved_ids[:k])) / k
def hit_at_k(relevant_ids_set, retrieved_ids, k):
return int(len(relevant_ids_set.intersection(retrieved_ids[:k])) > 0)
def ndcg_at_k(relevant_ids_scores, retrieved_ids, k):
dcg = 0.0
idcg = 0.0
for i, doc_id in enumerate(retrieved_ids[:k]):
rel = relevant_ids_scores.get(doc_id, 0)
if rel > 0:
dcg += (2**rel - 1) / log2(i+2)
sorted_rels = sorted(relevant_ids_scores.values(), reverse=True)[:k]
for i, rel in enumerate(sorted_rels):
if rel > 0:
idcg += (2**rel - 1) / log2(i+2)
return dcg / idcg if idcg > 0 else None
def evaluate_model(relevant_in_collection, relevant_scores_in_collection, doc_order, k):
return {
"Recall@k": round(recall_at_k(relevant_in_collection, doc_order, k), 4),
"Precision@k": round(precision_at_k(relevant_in_collection, doc_order, k), 4),
"Hit@k": hit_at_k(relevant_in_collection, doc_order, k),
"NDCG@k": None if ndcg_at_k(relevant_scores_in_collection, doc_order, k) is None else round(ndcg_at_k(relevant_scores_in_collection, doc_order, k), 4),
}
# --------------------
# Core
# --------------------
def run_demo(
query_text, retrieval_n, top_k, use_trec, trec_label, rel_threshold,
use_baseline, *selected_rerankers
):
client = get_client()
embedder = get_embedder()
qid = None
if use_trec and trec_label:
qid, query_text = label2qt[trec_label]
if not query_text or not query_text.strip():
return pd.DataFrame(), {"Note": "Empty query."}
q_vec = embedder.encode([query_text], normalize_embeddings=True)[0]
res = client.query_points(
collection_name=COLLECTION_NAME,
query=q_vec,
limit=int(retrieval_n),
with_payload=True
)
points = getattr(res, "points", res)
cand_docs, cand_texts, cand_qdrant_scores = [], [], []
for p in points:
payload = getattr(p, "payload", {}) or {}
pid = int(getattr(p, "id"))
doc_id = payload.get("doc_id", int_to_doc_id.get(pid, str(pid)))
cand_docs.append(doc_id)
cand_texts.append(payload.get("text", ""))
cand_qdrant_scores.append(getattr(p, "score", None))
cols = {
"rank": list(range(1, int(top_k)+1)),
"doc_id": [],
"score_qdrant": [],
"text_snippet": [],
}
reranker_scores = {}
for model_name, is_selected in zip(rerank_models, selected_rerankers):
if is_selected:
rr = get_reranker(model_name)
reranker_scores[model_name] = rr.predict([(query_text, t) for t in cand_texts])
for i in range(min(int(top_k), len(cand_docs))):
cols["doc_id"].append(cand_docs[i])
cols["score_qdrant"].append(cand_qdrant_scores[i])
txt = cand_texts[i]
cols["text_snippet"].append(txt[:300] + ("…" if len(txt) > 300 else ""))
for model_name in reranker_scores:
col_key = f"score_{model_name.split('/')[-1]}"
if col_key not in cols:
cols[col_key] = []
cols[col_key].append(float(reranker_scores[model_name][i]))
df = pd.DataFrame(cols)
metrics = {}
if qid is not None:
rels = qrels_dict.get(qid, {})
relevant_all = {d for d, s in rels.items() if s >= rel_threshold}
relevant_in_collection = relevant_all & INDEXED_DOC_IDS
relevant_scores_in_collection = {d: s for d, s in rels.items() if d in INDEXED_DOC_IDS}
ceiling_recall = round(len(relevant_in_collection) / len(relevant_all), 4) if relevant_all else None
if use_baseline:
metrics["Qdrant"] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, cand_docs, int(top_k))
for model_name, is_selected in zip(rerank_models, selected_rerankers):
if is_selected:
order = sorted(range(len(cand_docs)), key=lambda i: reranker_scores[model_name][i], reverse=True)
top_docs = [cand_docs[i] for i in order[:int(top_k)]]
metrics[model_name] = evaluate_model(relevant_in_collection, relevant_scores_in_collection, top_docs, int(top_k))
metrics["QueryID"] = int(qid)
metrics["Relevant>=threshold (all)"] = len(relevant_all)
metrics["Relevant in collection"] = len(relevant_in_collection)
metrics["Recall Ceiling (collection)"] = ceiling_recall
return df, metrics
# --------------------
# UI
# --------------------
with gr.Blocks(title="Qdrant Retrieval Demo") as demo:
gr.Markdown("### Qdrant Retrieval Demo (TREC-COVID) + Multiple Metrics")
with gr.Row():
query_text = gr.Textbox(label="Query (free text)", placeholder="e.g., ACE2 inhibitors and COVID-19", lines=2)
with gr.Row():
retrieval_n = gr.Slider(10, 2000, value=50, step=10, label="retrieval_n (candidates from Qdrant)")
top_k = gr.Slider(1, 500, value=10, step=1, label="top_k (metrics cutoff)")
with gr.Row():
use_trec = gr.Checkbox(label="Use a TREC-COVID query", value=True)
trec_choice = gr.Dropdown(choices=[lab for (lab, _, _) in trec_queries],
value=trec_queries[0][0] if trec_queries else None,
label="Pick TREC-COVID query")
rel_threshold = gr.Radio(choices=[1, 2], value=1, label="Relevance threshold")
gr.Markdown("**Models to evaluate:**")
with gr.Row():
use_baseline = gr.Checkbox(label="Qdrant baseline", value=True)
ce_checkboxes = [gr.Checkbox(label=model_name, value=False) for model_name in rerank_models]
run_btn = gr.Button("Search")
out_df = gr.Dataframe(label="Retrieved Docs + Scores", wrap=True)
out_metrics = gr.JSON(label="Metrics (per selected model + ceiling recall)")
run_btn.click(
fn=run_demo,
inputs=[query_text, retrieval_n, top_k, use_trec, trec_choice, rel_threshold,
use_baseline, *ce_checkboxes],
outputs=[out_df, out_metrics]
)
# demo.launch(...) # disabled for Spaces; see __main__ block below
if __name__ == "__main__":
try:
demo # Gradio Blocks defined in the notebook
except NameError:
raise RuntimeError("Could not find `demo`. Ensure your notebook defines `demo = gr.Blocks(...)`.")
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|