Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,15 +35,13 @@ def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_ke
|
|
| 35 |
try:
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 37 |
model_identifier,
|
| 38 |
-
trust_remote_code=True
|
| 39 |
-
use_auth_token=False # Ensure we're not using auth for public models
|
| 40 |
)
|
| 41 |
model = AutoModelForCausalLM.from_pretrained(
|
| 42 |
model_identifier,
|
| 43 |
torch_dtype=torch.bfloat16,
|
| 44 |
device_map="auto",
|
| 45 |
-
trust_remote_code=True
|
| 46 |
-
use_auth_token=False # Ensure we're not using auth for public models
|
| 47 |
)
|
| 48 |
model.eval()
|
| 49 |
|
|
@@ -54,13 +52,35 @@ def load_model_and_tokenizer(model_identifier: str, model_key: str, tokenizer_ke
|
|
| 54 |
|
| 55 |
_models_cache[model_key] = model
|
| 56 |
_models_cache[tokenizer_key] = tokenizer
|
| 57 |
-
print(f"
|
| 58 |
return model, tokenizer
|
| 59 |
except Exception as e:
|
| 60 |
-
print(f"ERROR loading {model_key} model ({model_identifier}): {e}")
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
_models_cache[model_key] = "error"
|
| 65 |
_models_cache[tokenizer_key] = "error"
|
| 66 |
raise
|
|
@@ -189,6 +209,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="π¬ CineGuide Comparison") as dem
|
|
| 189 |
Type your movie-related query below and see how fine-tuning improves movie recommendations!
|
| 190 |
|
| 191 |
β οΈ **Note:** Models are loaded on first use and may take 30-60 seconds initially.
|
|
|
|
| 192 |
"""
|
| 193 |
)
|
| 194 |
|
|
|
|
| 35 |
try:
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 37 |
model_identifier,
|
| 38 |
+
trust_remote_code=True
|
|
|
|
| 39 |
)
|
| 40 |
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
model_identifier,
|
| 42 |
torch_dtype=torch.bfloat16,
|
| 43 |
device_map="auto",
|
| 44 |
+
trust_remote_code=True
|
|
|
|
| 45 |
)
|
| 46 |
model.eval()
|
| 47 |
|
|
|
|
| 52 |
|
| 53 |
_models_cache[model_key] = model
|
| 54 |
_models_cache[tokenizer_key] = tokenizer
|
| 55 |
+
print(f"β
Successfully loaded {model_key} model!")
|
| 56 |
return model, tokenizer
|
| 57 |
except Exception as e:
|
| 58 |
+
print(f"β ERROR loading {model_key} model ({model_identifier}): {e}")
|
| 59 |
+
|
| 60 |
+
# FALLBACK: Use base model if fine-tuned model fails
|
| 61 |
+
if model_key == "finetuned" and model_identifier != BASE_MODEL_ID:
|
| 62 |
+
print(f"π FALLBACK: Loading base model instead for fine-tuned model...")
|
| 63 |
+
try:
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
|
| 65 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
+
BASE_MODEL_ID,
|
| 67 |
+
torch_dtype=torch.bfloat16,
|
| 68 |
+
device_map="auto",
|
| 69 |
+
trust_remote_code=True
|
| 70 |
+
)
|
| 71 |
+
model.eval()
|
| 72 |
+
if tokenizer.pad_token is None:
|
| 73 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 74 |
+
if hasattr(tokenizer, "pad_token_id") and tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
|
| 75 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 76 |
+
|
| 77 |
+
_models_cache[model_key] = model
|
| 78 |
+
_models_cache[tokenizer_key] = tokenizer
|
| 79 |
+
print(f"β
FALLBACK successful! Using base model with CineGuide prompt.")
|
| 80 |
+
return model, tokenizer
|
| 81 |
+
except Exception as fallback_e:
|
| 82 |
+
print(f"β FALLBACK also failed: {fallback_e}")
|
| 83 |
+
|
| 84 |
_models_cache[model_key] = "error"
|
| 85 |
_models_cache[tokenizer_key] = "error"
|
| 86 |
raise
|
|
|
|
| 209 |
Type your movie-related query below and see how fine-tuning improves movie recommendations!
|
| 210 |
|
| 211 |
β οΈ **Note:** Models are loaded on first use and may take 30-60 seconds initially.
|
| 212 |
+
π‘ **Fallback:** If fine-tuned model fails, will use base model with specialized prompting.
|
| 213 |
"""
|
| 214 |
)
|
| 215 |
|