Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,45 +16,32 @@ from utils import *
|
|
| 16 |
from PIL import Image
|
| 17 |
from gradio_image_prompter import ImagePrompter
|
| 18 |
|
| 19 |
-
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 20 |
-
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 21 |
-
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
|
| 22 |
-
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 23 |
|
| 24 |
-
#
|
| 25 |
-
#
|
| 26 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
|
| 27 |
-
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 28 |
|
| 29 |
@spaces.GPU
|
| 30 |
def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None):
|
| 31 |
-
if input_boxes is not None:
|
| 32 |
-
input_boxes = [input_boxes]
|
| 33 |
-
|
| 34 |
if model_id == 'sam':
|
| 35 |
-
|
|
|
|
| 36 |
else:
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
original_sizes = inputs["original_sizes"]
|
| 39 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
with torch.no_grad():
|
| 44 |
-
outputs = sam_model(**inputs)
|
| 45 |
-
else:
|
| 46 |
-
inputs = inputs.to(sam_hq_model.device)
|
| 47 |
-
with torch.no_grad():
|
| 48 |
-
outputs = sam_hq_model(**inputs)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
masks = sam_processor.image_processor.post_process_masks(
|
| 52 |
-
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
| 53 |
-
)
|
| 54 |
-
else:
|
| 55 |
-
masks = sam_hq_processor.image_processor.post_process_masks(
|
| 56 |
-
outputs.pred_masks.cpu(), original_sizes, reshaped_sizes
|
| 57 |
-
)
|
| 58 |
scores = outputs.iou_scores
|
| 59 |
return masks, scores
|
| 60 |
|
|
|
|
| 16 |
from PIL import Image
|
| 17 |
from gradio_image_prompter import ImagePrompter
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
|
| 21 |
+
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 22 |
+
#sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
|
| 23 |
+
#sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 24 |
|
| 25 |
@spaces.GPU
|
| 26 |
def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None):
|
|
|
|
|
|
|
|
|
|
| 27 |
if model_id == 'sam':
|
| 28 |
+
model = SamModel.from_pretrained("facebook/sam-vit-base").to("cuda")
|
| 29 |
+
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 30 |
else:
|
| 31 |
+
model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base").to("cuda")
|
| 32 |
+
processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 33 |
+
|
| 34 |
+
inputs = processor(raw_image, input_boxes=[input_boxes] if input_boxes else None,
|
| 35 |
+
input_points=[input_points] if input_points else None, return_tensors="pt")
|
| 36 |
+
|
| 37 |
original_sizes = inputs["original_sizes"]
|
| 38 |
reshaped_sizes = inputs["reshaped_input_sizes"]
|
| 39 |
+
inputs = inputs.to("cuda")
|
| 40 |
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), original_sizes, reshaped_sizes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
scores = outputs.iou_scores
|
| 46 |
return masks, scores
|
| 47 |
|