Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,19 +18,19 @@ from gradio_image_prompter import ImagePrompter
|
|
| 18 |
|
| 19 |
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 20 |
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 21 |
-
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 22 |
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 23 |
|
| 24 |
#sam_model = SamModel.from_pretrained("facebook/sam-vit-huge")
|
| 25 |
#sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
| 26 |
-
sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
|
| 27 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 28 |
|
| 29 |
@spaces.GPU
|
| 30 |
def predict_masks_and_scores(model, processor, raw_image, input_points=None, input_boxes=None):
|
| 31 |
if input_boxes is not None:
|
| 32 |
input_boxes = [input_boxes]
|
| 33 |
-
inputs = processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt")
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = model(**inputs)
|
| 36 |
|
|
@@ -118,6 +118,7 @@ with gr.Blocks(theme=theme, title="🔍 Compare SAM vs SAM-HQ") as demo:
|
|
| 118 |
gr.Interface(
|
| 119 |
fn=process_inputs,
|
| 120 |
examples=example_paths,
|
|
|
|
| 121 |
inputs=ImagePrompter(show_label=False),
|
| 122 |
outputs=result_html,
|
| 123 |
)
|
|
|
|
| 18 |
|
| 19 |
#sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 20 |
#sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-huge")
|
| 21 |
+
sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto")
|
| 22 |
sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base")
|
| 23 |
|
| 24 |
#sam_model = SamModel.from_pretrained("facebook/sam-vit-huge")
|
| 25 |
#sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
| 26 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto")
|
| 27 |
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
| 28 |
|
| 29 |
@spaces.GPU
|
| 30 |
def predict_masks_and_scores(model, processor, raw_image, input_points=None, input_boxes=None):
|
| 31 |
if input_boxes is not None:
|
| 32 |
input_boxes = [input_boxes]
|
| 33 |
+
inputs = processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt").to(model.device)
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = model(**inputs)
|
| 36 |
|
|
|
|
| 118 |
gr.Interface(
|
| 119 |
fn=process_inputs,
|
| 120 |
examples=example_paths,
|
| 121 |
+
cache_examples=False,
|
| 122 |
inputs=ImagePrompter(show_label=False),
|
| 123 |
outputs=result_html,
|
| 124 |
)
|