Spaces:
Running
on
L4
Running
on
L4
| import os | |
| os.system('pip install gradio-image-prompter') | |
| os.system('pip install pydantic==2.10.6') | |
| import gradio as gr | |
| import torch | |
| import spaces | |
| import json | |
| import base64 | |
| from io import BytesIO | |
| from transformers import SamHQModel, SamHQProcessor, SamModel, SamProcessor | |
| import os | |
| import pandas as pd | |
| from utils import * | |
| from PIL import Image | |
| from gradio_image_prompter import ImagePrompter | |
| sam_hq_model = SamHQModel.from_pretrained("syscv-community/sam-hq-vit-base", device_map="auto", torch_dtype="auto") | |
| sam_hq_processor = SamHQProcessor.from_pretrained("syscv-community/sam-hq-vit-base") | |
| sam_model = SamModel.from_pretrained("facebook/sam-vit-base", device_map="auto", torch_dtype="auto") | |
| sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") | |
| def predict_masks_and_scores(model_id, raw_image, input_points=None, input_boxes=None): | |
| if input_boxes is not None: | |
| input_boxes = [input_boxes] | |
| if model_id == 'sam': | |
| inputs = sam_processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt") | |
| else: | |
| inputs = sam_hq_processor(raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="pt") | |
| original_sizes = inputs["original_sizes"] | |
| reshaped_sizes = inputs["reshaped_input_sizes"] | |
| if model_id == 'sam': | |
| inputs = inputs.to(sam_model.device) | |
| with torch.no_grad(): | |
| outputs = sam_model(**inputs) | |
| else: | |
| inputs = inputs.to(sam_hq_model.device) | |
| with torch.no_grad(): | |
| outputs = sam_hq_model(**inputs) | |
| if model_id == 'sam': | |
| masks = sam_processor.image_processor.post_process_masks( | |
| outputs.pred_masks.cpu(), original_sizes, reshaped_sizes | |
| ) | |
| else: | |
| masks = sam_hq_processor.image_processor.post_process_masks( | |
| outputs.pred_masks.cpu(), original_sizes, reshaped_sizes | |
| ) | |
| scores = outputs.iou_scores | |
| return masks, scores | |
| def process_inputs(prompts): | |
| raw_entries = prompts["points"] | |
| input_points = [] | |
| input_boxes = [] | |
| for entry in raw_entries: | |
| x1, y1, type_, x2, y2, cls = entry | |
| if type_ == 1: | |
| input_points.append([int(x1), int(y1)]) | |
| elif type_ == 2: | |
| x_min = int(min(x1, x2)) | |
| y_min = int(min(y1, y2)) | |
| x_max = int(max(x1, x2)) | |
| y_max = int(max(y1, y2)) | |
| input_boxes.append([x_min, y_min, x_max, y_max]) | |
| input_boxes = [input_boxes] if input_boxes else None | |
| input_points = [input_points] if input_points else None | |
| user_image = prompts['image'] | |
| sam_masks, sam_scores = predict_masks_and_scores('sam', user_image, input_boxes=input_boxes, input_points=input_points) | |
| sam_hq_masks, sam_hq_scores = predict_masks_and_scores('sam_hq', user_image, input_boxes=input_boxes, input_points=input_points) | |
| if input_boxes and input_points: | |
| img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM') | |
| img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], input_points[0], model_name='SAM_HQ') | |
| elif input_boxes: | |
| img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], input_boxes[0], None, model_name='SAM') | |
| img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], input_boxes[0], None, model_name='SAM_HQ') | |
| elif input_points: | |
| img1_b64 = show_all_annotations_on_image_base64(user_image, sam_masks[0][0], sam_scores[:, 0, :], None, input_points[0], model_name='SAM') | |
| img2_b64 = show_all_annotations_on_image_base64(user_image, sam_hq_masks[0][0], sam_hq_scores[:, 0, :], None, input_points[0], model_name='SAM_HQ') | |
| else: | |
| img1_b64 = show_all_annotations_on_image_base64(user_image, None, None, None, None, model_name='SAM') | |
| img2_b64 = show_all_annotations_on_image_base64(user_image, None, None, None, None, model_name='SAM_HQ') | |
| print('sam_masks', sam_masks) | |
| print('sam_scores', sam_scores) | |
| print('sam_hq_masks', sam_hq_masks) | |
| print('sam_hq_scores', sam_hq_scores) | |
| print('input_boxes', input_boxes) | |
| print('input_points', input_points) | |
| print('user_image', user_image) | |
| print("img1_b64", img1_b64) | |
| print("img2_b64", img2_b64) | |
| html_code = f""" | |
| <div style="position: relative; width: 100%; max-width: 600px; margin: 0 auto;" id="imageCompareContainer"> | |
| <div style="position: relative; width: 100%;"> | |
| <img src="data:image/png;base64,{img1_b64}" style="width:100%; display:block;"> | |
| <div id="topWrapper" style="position:absolute; top:0; left:0; width:100%; overflow:hidden;"> | |
| <img id="topImage" src="data:image/png;base64,{img2_b64}" style="width:100%;"> | |
| </div> | |
| <div id="sliderLine" style="position:absolute; top:0; left:0; width:2px; height:100%; background-color:red; pointer-events:none;"></div> | |
| </div> | |
| <input type="range" min="0" max="100" value="0" | |
| style="width:100%; margin-top: 10px;" | |
| oninput=" | |
| const val = this.value; | |
| const container = document.getElementById('imageCompareContainer'); | |
| const width = container.offsetWidth; | |
| const clipValue = 100 - val; | |
| document.getElementById('topImage').style.clipPath = 'inset(0 ' + clipValue + '% 0 0)'; | |
| document.getElementById('sliderLine').style.left = (width * val / 100) + 'px'; | |
| "> | |
| </div> | |
| """ | |
| return html_code | |
| process_inputs.zerogpu = True | |
| example_paths = [{"image": 'images/' + path} for path in os.listdir('images')] | |
| theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="emerald") | |
| with gr.Blocks(theme=theme, title="π Compare SAM vs SAM-HQ") as demo: | |
| image_path_box = gr.Textbox(visible=False) | |
| gr.Markdown("## π Compare SAM vs SAM-HQ") | |
| gr.Markdown("Compare the performance of SAM and SAM-HQ on various images. Click on an example to load it or upload your unique image.") | |
| gr.Markdown("Draw boxes and/or points over the image and click Submit!") | |
| gr.Markdown("[SAM-HQ](https://huggingface.co/syscv-community/sam-hq-vit-huge) - [SAM](https://huggingface.co/facebook/sam-vit-huge)") | |
| print('example_paths', example_paths) | |
| result_html = gr.HTML(elem_id="result-html") | |
| gr.Interface( | |
| fn=process_inputs, | |
| examples=example_paths, | |
| cache_examples=False, | |
| inputs=ImagePrompter(show_label=False), | |
| outputs=result_html, | |
| ) | |
| gr.HTML(""" | |
| <style> | |
| #result-html { | |
| min-height: 500px; | |
| border: 1px solid #ccc; | |
| padding: 10px; | |
| box-sizing: border-box; | |
| background-color: #fff; | |
| border-radius: 8px; | |
| box-shadow: 0 2px 6px rgba(0, 0, 0, 0.1); | |
| } | |
| </style> | |
| """) | |
| demo.launch() | |