Spaces:
Sleeping
Sleeping
| import os | |
| import subprocess | |
| import torch | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from vllm.config import DeviceConfig | |
| from vllm import LLM | |
| from sal.models.reward_models import RLHFFlow | |
| if not os.path.exists("search-and-learn"): | |
| subprocess.run(["git", "clone", "https://github.com/huggingface/search-and-learn"]) | |
| subprocess.run(["pip", "install", "-e", "./search-and-learn[dev]"]) | |
| device_config = DeviceConfig(device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')) | |
| print('device_config', device_config) | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| print('device', device) | |
| model_path = "meta-llama/Llama-3.2-1B-Instruct" | |
| prm_path = "RLHFlow/Llama3.1-8B-PRM-Deepseek-Data" | |
| llm = LLM( | |
| model=model_path, | |
| gpu_memory_utilization=0.5, # Utilize 50% of GPU memory | |
| enable_prefix_caching=True, # Optimize repeated prefix computations | |
| seed=42, # Set seed for reproducibility | |
| ) | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| """ | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |