Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| import argparse | |
| import subprocess | |
| import os | |
| import torch | |
| from huggingface_hub import snapshot_download | |
| # Arguments | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--task", type=str, default="t2v-14B") | |
| parser.add_argument("--size", type=str, default="832*480") | |
| parser.add_argument("--frame_num", type=int, default=60) | |
| parser.add_argument("--sample_steps", type=int, default=20) | |
| parser.add_argument("--ckpt_dir", type=str, default="./Wan2.1-T2V-14B") | |
| parser.add_argument("--offload_model", type=str, default="True") | |
| parser.add_argument("--prompt", type=str, required=True) | |
| args = parser.parse_args() | |
| # Ensure the model is downloaded | |
| if not os.path.exists(args.ckpt_dir): | |
| print("π Downloading WAN 2.1 - 14B model from Hugging Face...") | |
| snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-14B", local_dir=args.ckpt_dir) | |
| # Free up GPU memory | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cudnn.deterministic = True | |
| # Run WAN 2.1 - 14B Model | |
| command = f"python generate.py --task {args.task} --size {args.size} --frame_num {args.frame_num} --sample_steps {args.sample_steps} --ckpt_dir {args.ckpt_dir} --offload_model {args.offload_model} --prompt \"{args.prompt}\"" | |
| process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| stdout, stderr = process.communicate() | |
| # Print logs for debugging | |
| print("πΉ Output:", stdout.decode()) | |
| print("πΊ Error:", stderr.decode()) | |
| # Verify if video was created | |
| if os.path.exists("output.mp4"): | |
| print("β Video generated successfully: output.mp4") | |
| else: | |
| print("β Error: Video file not found!") | |