Spaces:
Running
Running
| import numpy as np | |
| import pandas as pd | |
| import plotly.graph_objects as go | |
| from umap import UMAP | |
| from typing import List, Union | |
| # Shamelessly taken and adapted from Bertopic original implementation here (Maarten Grootendorst): https://github.com/MaartenGr/BERTopic/blob/master/bertopic/plotting/_documents.py | |
| def visualize_documents_custom(topic_model, | |
| docs: List[str], | |
| hover_labels: List[str], | |
| topics: List[int] = None, | |
| embeddings: np.ndarray = None, | |
| reduced_embeddings: np.ndarray = None, | |
| sample: float = None, | |
| hide_annotations: bool = False, | |
| hide_document_hover: bool = False, | |
| custom_labels: Union[bool, str] = False, | |
| title: str = "<b>Documents and Topics</b>", | |
| width: int = 1200, | |
| height: int = 750): | |
| """ Visualize documents and their topics in 2D | |
| Arguments: | |
| topic_model: A fitted BERTopic instance. | |
| docs: The documents you used when calling either `fit` or `fit_transform` | |
| topics: A selection of topics to visualize. | |
| Not to be confused with the topics that you get from `.fit_transform`. | |
| For example, if you want to visualize only topics 1 through 5: | |
| `topics = [1, 2, 3, 4, 5]`. | |
| embeddings: The embeddings of all documents in `docs`. | |
| reduced_embeddings: The 2D reduced embeddings of all documents in `docs`. | |
| sample: The percentage of documents in each topic that you would like to keep. | |
| Value can be between 0 and 1. Setting this value to, for example, | |
| 0.1 (10% of documents in each topic) makes it easier to visualize | |
| millions of documents as a subset is chosen. | |
| hide_annotations: Hide the names of the traces on top of each cluster. | |
| hide_document_hover: Hide the content of the documents when hovering over | |
| specific points. Helps to speed up generation of visualization. | |
| custom_labels: If bool, whether to use custom topic labels that were defined using | |
| `topic_model.set_topic_labels`. | |
| If `str`, it uses labels from other aspects, e.g., "Aspect1". | |
| title: Title of the plot. | |
| width: The width of the figure. | |
| height: The height of the figure. | |
| Examples: | |
| To visualize the topics simply run: | |
| ```python | |
| topic_model.visualize_documents(docs) | |
| ``` | |
| Do note that this re-calculates the embeddings and reduces them to 2D. | |
| The advised and prefered pipeline for using this function is as follows: | |
| ```python | |
| from sklearn.datasets import fetch_20newsgroups | |
| from sentence_transformers import SentenceTransformer | |
| from bertopic import BERTopic | |
| from umap import UMAP | |
| # Prepare embeddings | |
| docs = fetch_20newsgroups(subset='all', remove=('headers', 'footers', 'quotes'))['data'] | |
| sentence_model = SentenceTransformer("all-MiniLM-L6-v2") | |
| embeddings = sentence_model.encode(docs, show_progress_bar=False) | |
| # Train BERTopic | |
| topic_model = BERTopic().fit(docs, embeddings) | |
| # Reduce dimensionality of embeddings, this step is optional | |
| # reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings) | |
| # Run the visualization with the original embeddings | |
| topic_model.visualize_documents(docs, embeddings=embeddings) | |
| # Or, if you have reduced the original embeddings already: | |
| topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) | |
| ``` | |
| Or if you want to save the resulting figure: | |
| ```python | |
| fig = topic_model.visualize_documents(docs, reduced_embeddings=reduced_embeddings) | |
| fig.write_html("path/to/file.html") | |
| ``` | |
| <iframe src="../../getting_started/visualization/documents.html" | |
| style="width:1000px; height: 800px; border: 0px;""></iframe> | |
| """ | |
| topic_per_doc = topic_model.topics_ | |
| # Add <br> tags to hover labels to get them to appear on multiple lines | |
| def wrap_by_word(s, n): | |
| '''returns a string up to 300 words where \\n is inserted between every n words''' | |
| a = s.split()[:300] | |
| ret = '' | |
| for i in range(0, len(a), n): | |
| ret += ' '.join(a[i:i+n]) + '<br>' | |
| return ret | |
| # Apply the function to every element in the list | |
| hover_labels = [wrap_by_word(s, n=20) for s in hover_labels] | |
| # Sample the data to optimize for visualization and dimensionality reduction | |
| if sample is None or sample > 1: | |
| sample = 1 | |
| indices = [] | |
| for topic in set(topic_per_doc): | |
| s = np.where(np.array(topic_per_doc) == topic)[0] | |
| size = len(s) if len(s) < 100 else int(len(s) * sample) | |
| indices.extend(np.random.choice(s, size=size, replace=False)) | |
| indices = np.array(indices) | |
| df = pd.DataFrame({"topic": np.array(topic_per_doc)[indices]}) | |
| df["doc"] = [docs[index] for index in indices] | |
| df["hover_labels"] = [hover_labels[index] for index in indices] | |
| df["topic"] = [topic_per_doc[index] for index in indices] | |
| # Extract embeddings if not already done | |
| if sample is None: | |
| if embeddings is None and reduced_embeddings is None: | |
| embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
| else: | |
| embeddings_to_reduce = embeddings | |
| else: | |
| if embeddings is not None: | |
| embeddings_to_reduce = embeddings[indices] | |
| elif embeddings is None and reduced_embeddings is None: | |
| embeddings_to_reduce = topic_model._extract_embeddings(df.doc.to_list(), method="document") | |
| # Reduce input embeddings | |
| if reduced_embeddings is None: | |
| umap_model = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit(embeddings_to_reduce) | |
| embeddings_2d = umap_model.embedding_ | |
| elif sample is not None and reduced_embeddings is not None: | |
| embeddings_2d = reduced_embeddings[indices] | |
| elif sample is None and reduced_embeddings is not None: | |
| embeddings_2d = reduced_embeddings | |
| unique_topics = set(topic_per_doc) | |
| if topics is None: | |
| topics = unique_topics | |
| # Combine data | |
| df["x"] = embeddings_2d[:, 0] | |
| df["y"] = embeddings_2d[:, 1] | |
| # Prepare text and names | |
| if isinstance(custom_labels, str): | |
| names = [[[str(topic), None]] + topic_model.topic_aspects_[custom_labels][topic] for topic in unique_topics] | |
| names = ["_".join([label[0] for label in labels[:4]]) for labels in names] | |
| names = [label if len(label) < 30 else label[:27] + "..." for label in names] | |
| elif topic_model.custom_labels_ is not None and custom_labels: | |
| names = [topic_model.custom_labels_[topic + topic_model._outliers] for topic in unique_topics] | |
| else: | |
| names = [f"{topic}_" + "_".join([word for word, value in topic_model.get_topic(topic)][:3]) for topic in unique_topics] | |
| # Visualize | |
| fig = go.Figure() | |
| # Outliers and non-selected topics | |
| non_selected_topics = set(unique_topics).difference(topics) | |
| if len(non_selected_topics) == 0: | |
| non_selected_topics = [-1] | |
| selection = df.loc[df.topic.isin(non_selected_topics), :] | |
| selection["text"] = "" | |
| selection.loc[len(selection), :] = [None, None, None, selection.x.mean(), selection.y.mean(), "Other documents"] | |
| fig.add_trace( | |
| go.Scattergl( | |
| x=selection.x, | |
| y=selection.y, | |
| hovertext=selection.hover_labels if not hide_document_hover else None, | |
| hoverinfo="text", | |
| mode='markers+text', | |
| name="other", | |
| showlegend=False, | |
| marker=dict(color='#CFD8DC', size=5, opacity=0.5), | |
| hoverlabel=dict(align='left') | |
| ) | |
| ) | |
| # Selected topics | |
| for name, topic in zip(names, unique_topics): | |
| if topic in topics and topic != -1: | |
| selection = df.loc[df.topic == topic, :] | |
| selection["text"] = "" | |
| if not hide_annotations: | |
| selection.loc[len(selection), :] = [None, None, selection.x.mean(), selection.y.mean(), name] | |
| fig.add_trace( | |
| go.Scattergl( | |
| x=selection.x, | |
| y=selection.y, | |
| hovertext=selection.hover_labels if not hide_document_hover else None, | |
| hoverinfo="text", | |
| text=selection.text, | |
| mode='markers+text', | |
| name=name, | |
| textfont=dict( | |
| size=12, | |
| ), | |
| marker=dict(size=5, opacity=0.5), | |
| hoverlabel=dict(align='left') | |
| )) | |
| # Add grid in a 'plus' shape | |
| x_range = (df.x.min() - abs((df.x.min()) * .15), df.x.max() + abs((df.x.max()) * .15)) | |
| y_range = (df.y.min() - abs((df.y.min()) * .15), df.y.max() + abs((df.y.max()) * .15)) | |
| fig.add_shape(type="line", | |
| x0=sum(x_range) / 2, y0=y_range[0], x1=sum(x_range) / 2, y1=y_range[1], | |
| line=dict(color="#CFD8DC", width=2)) | |
| fig.add_shape(type="line", | |
| x0=x_range[0], y0=sum(y_range) / 2, x1=x_range[1], y1=sum(y_range) / 2, | |
| line=dict(color="#9E9E9E", width=2)) | |
| fig.add_annotation(x=x_range[0], y=sum(y_range) / 2, text="D1", showarrow=False, yshift=10) | |
| fig.add_annotation(y=y_range[1], x=sum(x_range) / 2, text="D2", showarrow=False, xshift=10) | |
| # Stylize layout | |
| fig.update_layout( | |
| template="simple_white", | |
| title={ | |
| 'text': f"{title}", | |
| 'x': 0.5, | |
| 'xanchor': 'center', | |
| 'yanchor': 'top', | |
| 'font': dict( | |
| size=22, | |
| color="Black") | |
| }, | |
| hoverlabel_align = 'left', | |
| width=width, | |
| height=height | |
| ) | |
| fig.update_xaxes(visible=False) | |
| fig.update_yaxes(visible=False) | |
| return fig | |