# utils/helper_functions.py import time import json import csv from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder # Labeling logic keywords_to_labels = { 'advice': ['try', 'should', 'suggest', 'recommend'], 'validation': ['understand', 'feel', 'valid', 'normal'], 'information': ['cause', 'often', 'disorder', 'symptom'], 'question': ['how', 'what', 'why', 'have you'] } def auto_label_response(response): response = response.lower() for label, keywords in keywords_to_labels.items(): if any(word in response for word in keywords): return label return 'information' def build_prompt(user_input, response_type): prompts = { "advice": f"A patient said: \"{user_input}\". What advice should a mental health counselor give to support them?", "validation": f"A patient said: \"{user_input}\". How can a counselor validate and empathize with their emotions?", "information": f"A patient said: \"{user_input}\". Explain what might be happening from a mental health perspective.", "question": f"A patient said: \"{user_input}\". What thoughtful follow-up questions should a counselor ask?" } return prompts.get(response_type, prompts["information"]) def predict_response_type(user_input, model, vectorizer, label_encoder): vec = vectorizer.transform([user_input]) pred = model.predict(vec) proba = model.predict_proba(vec).max() label = label_encoder.inverse_transform(pred)[0] return label, proba def generate_llm_response(prompt, llm): start = time.time() result = llm(prompt, max_tokens=300, temperature=0.7) end = time.time() elapsed = round(end - start, 1) return result['choices'][0]['text'].strip(), elapsed def trim_memory(history, max_turns=6): return history[-max_turns * 2:] def save_conversation(history): timestamp = time.strftime("%Y%m%d-%H%M%S") file_name = f"chat_log_{timestamp}.csv" with open(file_name, "w", newline='') as f: writer = csv.writer(f) writer.writerow(["Role", "Content", "Intent", "Confidence"]) for turn in history: writer.writerow([ turn.get("role", ""), turn.get("content", ""), turn.get("label", ""), round(float(turn.get("confidence", 0)) * 100) ]) print(f"Saved to {file_name}") return file_name