mental_health_chatbot / app_slow_version.py
scdong's picture
Upload 10 files
bd30f7c verified
raw
history blame
6.37 kB
# Streamlit App: Counselor Assistant using XGBoost + Flan-T5 (Cloud Version)
import streamlit as st
import os
import pandas as pd
import json
import time
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from transformers import pipeline
st.set_page_config(page_title="Counselor Assistant", layout="centered")
st.markdown("""
<style>
.main { background-color: #f4f4f9; padding: 1rem 2rem; border-radius: 12px; }
h1 { color: #2c3e50; text-align: center; font-size: 2.4rem; }
.user { color: #1f77b4; font-weight: bold; }
.assistant { color: #2ca02c; font-weight: bold; }
</style>
""", unsafe_allow_html=True)
st.title("Mental Health Counselor Assistant")
st.markdown("""
Welcome, counselor 👩‍⚕️👨‍⚕️
This assistant is designed to provide you with **supportive, evidence-based suggestions** when you're unsure how to best respond to a patient’s concerns.
Just enter what your patient shared with you, and this tool will:
- Predict the type of support that fits best (e.g., advice, validation, information, and question)
- Generate a suggested counselor reply
- Let you save the conversation for your records
This is not a diagnostic tool — it’s here to support **your clinical intuition**.
""")
# Load and prepare the dataset
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
df = df[['Context', 'Response']].dropna().copy()
keywords_to_labels = {
'advice': ['try', 'should', 'suggest', 'recommend'],
'validation': ['understand', 'feel', 'valid', 'normal'],
'information': ['cause', 'often', 'disorder', 'symptom'],
'question': ['how', 'what', 'why', 'have you']
}
def auto_label_response(response):
response = response.lower()
for label, keywords in keywords_to_labels.items():
if any(word in response for word in keywords):
return label
return 'information'
df['response_type'] = df['Response'].apply(auto_label_response)
df['combined_text'] = df['Context'] + " " + df['Response']
le = LabelEncoder()
y = le.fit_transform(df['response_type'])
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
X = vectorizer.fit_transform(df['combined_text'])
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y, random_state=42
)
xgb_model = XGBClassifier(
objective='multi:softmax',
num_class=len(le.classes_),
eval_metric='mlogloss',
use_label_encoder=False,
max_depth=6,
learning_rate=0.1,
n_estimators=100
)
xgb_model.fit(X_train, y_train)
# Replace Mistral-7B with Flan-T5 hosted model
@st.cache_resource(show_spinner="Loading Flan-T5 model...")
def load_llm():
return pipeline("text2text-generation", model="google/flan-t5-base")
llm = load_llm()
def predict_response_type(user_input):
vec = vectorizer.transform([user_input])
pred = xgb_model.predict(vec)
proba = xgb_model.predict_proba(vec).max()
label = le.inverse_transform(pred)[0]
return label, proba
def build_prompt(user_input, response_type):
prompts = {
"advice": f"A patient said: \"{user_input}\". What advice should a mental health counselor give to support them?",
"validation": f"A patient said: \"{user_input}\". How can a counselor validate and empathize with their emotions?",
"information": f"A patient said: \"{user_input}\". Explain what might be happening from a mental health perspective.",
"question": f"A patient said: \"{user_input}\". What thoughtful follow-up questions should a counselor ask?"
}
return prompts.get(response_type, prompts["information"])
def generate_llm_response(user_input, response_type):
prompt = build_prompt(user_input, response_type)
start = time.time()
with st.spinner("Thinking through a helpful response for your patient..."):
result = llm(prompt, max_length=150, do_sample=True, temperature=0.7)
end = time.time()
st.info(f"Response generated in {end - start:.1f} seconds")
return result[0]["generated_text"].strip()
def trim_memory(history, max_turns=6):
return history[-max_turns * 2:]
def save_conversation(history):
with open("chat_history.json", "w") as f:
json.dump(history, f, indent=2)
with open("chat_log.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(["Role", "Content"])
for entry in history:
writer.writerow([entry.get("role", ""), entry.get("content", "")])
st.success("Saved to chat_history.json and chat_log.csv")
# Streamlit UI
if "history" not in st.session_state:
st.session_state.history = []
with st.expander("💡 Sample inputs you can try"):
st.markdown("""
- My patient is constantly feeling overwhelmed at work.
- A student says they panic every time they have to speak in class.
- Someone told me they think they’ll never feel okay again.
""")
user_input = st.text_area("💬 What did your patient say?", placeholder="e.g. I just feel like I'm never going to get better.", height=100)
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
send = st.button("Suggest Response")
with col2:
save = st.button("📁 Save This")
with col3:
reset = st.button("🔁 Reset")
if send and user_input:
predicted_type, confidence = predict_response_type(user_input)
reply = generate_llm_response(user_input, predicted_type)
st.session_state.history.append({"role": "user", "content": user_input})
st.session_state.history.append({"role": "assistant", "content": reply, "label": predicted_type, "confidence": confidence})
st.session_state.history = trim_memory(st.session_state.history)
if save:
save_conversation(st.session_state.history)
if reset:
st.session_state.history = []
st.success("Conversation has been cleared.")
st.markdown("---")
for turn in st.session_state.history:
if turn["role"] == "user":
st.markdown(f"🧍‍♀️ **Patient:** {turn['content']}")
else:
st.markdown(f"👩‍⚕️👨‍⚕️ **Suggested Counselor Response:** {turn['content']}")
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
st.markdown("---")