Spaces:
Sleeping
Sleeping
File size: 7,585 Bytes
fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c fe336db bd30f7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# Streamlit App: Counselor Assistant (XGBoost + Selectable LLMs from Hugging Face)
import streamlit as st
import os
import pandas as pd
import json
import time
import csv
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from transformers import pipeline
# --- Page Setup ---
st.set_page_config(page_title="Counselor Assistant", layout="centered")
# --- Styling ---
st.markdown("""
<style>
.main { background-color: #f9f9f9; padding: 1rem 2rem; border-radius: 12px; }
h1 { color: #2c3e50; text-align: center; font-size: 2.4rem; }
.user { color: #1f77b4; font-weight: bold; }
.assistant { color: #2ca02c; font-weight: bold; }
</style>
""", unsafe_allow_html=True)
# --- App Header ---
st.title("π§ Mental Health Counselor Assistant")
st.markdown("""
Welcome, counselor π
This tool offers **AI-powered suggestions** to support you when responding to your patients.
### What it does:
- π§© Predicts what type of support is best: *Advice*, *Validation*, *Information*, or *Question*
- π¬ Generates an LLM-powered suggestion for you
- πΎ Lets you save your session for reflection
This is here to support β not replace β your clinical instincts π
""")
# --- Load and label dataset ---
df = pd.read_csv("dataset/Kaggle_Mental_Health_Conversations_train.csv")
df = df[['Context', 'Response']].dropna().copy()
# Auto-labeling: heuristics for labeling responses
keywords_to_labels = {
'advice': ['try', 'should', 'suggest', 'recommend'],
'validation': ['understand', 'feel', 'valid', 'normal'],
'information': ['cause', 'often', 'disorder', 'symptom'],
'question': ['how', 'what', 'why', 'have you']
}
def auto_label_response(response):
response = response.lower()
for label, keywords in keywords_to_labels.items():
if any(word in response for word in keywords):
return label
return 'information'
df['response_type'] = df['Response'].apply(auto_label_response)
df['combined_text'] = df['Context'] + " " + df['Response']
# Encode labels
le = LabelEncoder()
y = le.fit_transform(df['response_type'])
# TF-IDF vectorizer on combined text
vectorizer = TfidfVectorizer(max_features=2000, ngram_range=(1, 2))
X = vectorizer.fit_transform(df['combined_text'])
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, stratify=y, random_state=42
)
# XGBoost Classifier
xgb_model = XGBClassifier(
objective='multi:softmax',
num_class=len(le.classes_),
eval_metric='mlogloss',
use_label_encoder=False,
max_depth=6,
learning_rate=0.1,
n_estimators=100
)
xgb_model.fit(X_train, y_train)
# --- Select Model Option ---
model_options = {
"google/flan-t5-base": "β
Flan-T5 (Fast, Clean)",
"declare-lab/flan-alpaca-gpt4-xl": "π¬ Flan Alpaca GPT4 (Human-sounding)",
"google/flan-ul2": "π§ Flan-UL2 (Deeper reasoning)"
}
model_choice = st.selectbox("π§ Choose a Response Model", list(model_options.keys()), format_func=lambda x: model_options[x])
@st.cache_resource(show_spinner="Loading selected language model...")
def load_llm(model_name):
return pipeline("text2text-generation", model=model_name)
llm = load_llm(model_choice)
# --- Utility Functions ---
def predict_response_type(user_input):
vec = vectorizer.transform([user_input])
pred = xgb_model.predict(vec)
proba = xgb_model.predict_proba(vec).max()
label = le.inverse_transform(pred)[0]
return label, proba
def build_prompt(user_input, response_type):
prompts = {
"advice": f"A patient said: \"{user_input}\". What advice should a mental health counselor give to support them?",
"validation": f"A patient said: \"{user_input}\". How can a counselor validate and empathize with their emotions?",
"information": f"A patient said: \"{user_input}\". Explain what might be happening from a mental health perspective.",
"question": f"A patient said: \"{user_input}\". What thoughtful follow-up questions should a counselor ask?"
}
return prompts.get(response_type, prompts["information"])
def generate_llm_response(user_input, response_type):
prompt = build_prompt(user_input, response_type)
start = time.time()
with st.spinner("Thinking through a helpful response for your patient..."):
result = llm(prompt, max_length=150, do_sample=True, temperature=0.7)
end = time.time()
st.info(f"Response generated in {end - start:.1f} seconds")
return result[0]["generated_text"].strip()
def trim_memory(history, max_turns=6):
return history[-max_turns * 2:]
def save_conversation(history):
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
with open(f"chat_log_{now}.csv", "w", newline='') as f:
writer = csv.writer(f)
writer.writerow(["Role", "Content", "Intent", "Confidence"])
for entry in history:
writer.writerow([
entry.get("role", ""),
entry.get("content", ""),
entry.get("label", ""),
round(float(entry.get("confidence", 0)) * 100)
])
st.success(f"Saved to chat_log_{now}.csv")
# --- Session State Setup ---
if "history" not in st.session_state:
st.session_state.history = []
if "user_input" not in st.session_state:
st.session_state.user_input = ""
# --- Display Sample Prompts ---
with st.expander("π‘ Sample inputs you can try"):
st.markdown("""
- My patient is constantly feeling overwhelmed at work.
- A student says they panic every time they have to speak in class.
- Someone told me they think theyβll never feel okay again.
""")
# --- Text Area + Word Counter ---
MAX_WORDS = 1000
word_count = len(st.session_state.user_input.split())
st.markdown(f"**π Input Length:** {word_count} / {MAX_WORDS} words")
st.session_state.user_input = st.text_area(
"π¬ What did your patient say?",
value=st.session_state.user_input,
placeholder="e.g. I just feel like I'm never going to get better.",
height=100
)
# --- Button Layout ---
col1, col2, col3 = st.columns([2, 1, 1])
with col1:
send = st.button("π‘ Suggest Response")
with col2:
save = st.button("π Save This")
with col3:
reset = st.button("π Reset")
# --- Button Logic ---
if send and st.session_state.user_input:
user_input = st.session_state.user_input
predicted_type, confidence = predict_response_type(user_input)
reply = generate_llm_response(user_input, predicted_type)
st.session_state.history.append({"role": "user", "content": user_input})
st.session_state.history.append({
"role": "assistant",
"content": reply,
"label": predicted_type,
"confidence": confidence
})
st.session_state.history = trim_memory(st.session_state.history)
if save:
save_conversation(st.session_state.history)
if reset:
st.session_state.history = []
st.session_state.user_input = ""
st.success("Conversation has been cleared.")
# --- Chat History Display ---
st.markdown("---")
for turn in st.session_state.history:
if turn["role"] == "user":
st.markdown(f"π§ββοΈ **Patient:** {turn['content']}")
else:
st.markdown(f"π©ββοΈπ¨ββοΈ **Suggested Counselor Response:** {turn['content']}")
st.caption(f"_Intent: {turn['label']} (Confidence: {turn['confidence']:.0%})_")
st.markdown("---")
|