Spaces:
Build error
Build error
add: initial files.
Browse files- app.py +69 -0
- lsh.pickle +3 -0
- requirements.txt +3 -0
- similarity_utils.py +175 -0
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Thanks to Freddy Boulton (https://github.com/freddyaboulton) for helping with this.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
import pickle
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
from transformers import AutoModel
|
| 11 |
+
|
| 12 |
+
from similarity_utils import BuildLSHTable
|
| 13 |
+
|
| 14 |
+
seed = 42
|
| 15 |
+
|
| 16 |
+
# Only runs once when the script is first run.
|
| 17 |
+
with open("lsh.pickle", "rb") as handle:
|
| 18 |
+
loaded_lsh = pickle.load(handle)
|
| 19 |
+
|
| 20 |
+
# Load model for computing embeddings.
|
| 21 |
+
model_ckpt = "nateraw/vit-base-beans"
|
| 22 |
+
model = AutoModel.from_pretrained(model_ckpt)
|
| 23 |
+
lsh_builder = BuildLSHTable(model)
|
| 24 |
+
lsh_builder.lsh = loaded_lsh
|
| 25 |
+
|
| 26 |
+
# Candidate images.
|
| 27 |
+
dataset = load_dataset("beans")
|
| 28 |
+
candidate_dataset = dataset["train"].shuffle(seed=seed)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def query(image, top_k):
|
| 32 |
+
results = lsh_builder.query(image)
|
| 33 |
+
|
| 34 |
+
# Should be a list of string file paths for gr.Gallery to work
|
| 35 |
+
images = []
|
| 36 |
+
# List of labels for each image in the gallery
|
| 37 |
+
labels = []
|
| 38 |
+
|
| 39 |
+
candidates = []
|
| 40 |
+
overlaps = []
|
| 41 |
+
|
| 42 |
+
for idx, r in enumerate(sorted(results, key=results.get, reverse=True)):
|
| 43 |
+
if idx == top_k:
|
| 44 |
+
break
|
| 45 |
+
image_id, label = r.split("_")[0], r.split("_")[1]
|
| 46 |
+
candidates.append(candidate_dataset[int(image_id)]["image"])
|
| 47 |
+
labels.append(label)
|
| 48 |
+
overlaps.append(results[r])
|
| 49 |
+
|
| 50 |
+
candidates.insert(0, image)
|
| 51 |
+
labels.insert(0, label)
|
| 52 |
+
|
| 53 |
+
for i, candidate in enumerate(candidates):
|
| 54 |
+
filename = f"{i}.png"
|
| 55 |
+
candidate.save(filename)
|
| 56 |
+
images.append(filename)
|
| 57 |
+
|
| 58 |
+
# The gallery component can be a list of tuples, where the first element is a path to a file
|
| 59 |
+
# and the second element is an optional caption for that image
|
| 60 |
+
return list(zip(images, labels))
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# You can set the type of gr.Image to be PIL, numpy or str (filepath)
|
| 64 |
+
# Not sure what the best for this demo is.
|
| 65 |
+
gr.Interface(
|
| 66 |
+
query,
|
| 67 |
+
inputs=[gr.Image(), gr.Slider(value=5, minimum=1, maximum=10, step=1)],
|
| 68 |
+
outputs=gr.Gallery(),
|
| 69 |
+
).launch()
|
lsh.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:caa1727832f2279a4026b03b9f17638ff4a4deffa0a28586e74db59332dce732
|
| 3 |
+
size 136667
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.25.1
|
| 2 |
+
datasets==2.7.1
|
| 3 |
+
numpy==1.21.6
|
similarity_utils.py
ADDED
|
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union
|
| 2 |
+
|
| 3 |
+
import datasets
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import torchvision.transforms as T
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from tqdm.auto import tqdm
|
| 9 |
+
from transformers import AutoFeatureExtractor, AutoModel
|
| 10 |
+
|
| 11 |
+
seed = 42
|
| 12 |
+
hash_size = 8
|
| 13 |
+
hidden_dim = 768 # ViT-base
|
| 14 |
+
np.random.seed(seed)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
# Device.
|
| 18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
# Load model for computing embeddings..
|
| 21 |
+
model_ckpt = "nateraw/vit-base-beans"
|
| 22 |
+
extractor = AutoFeatureExtractor.from_pretrained(model_ckpt)
|
| 23 |
+
|
| 24 |
+
# Data transformation chain.
|
| 25 |
+
transformation_chain = T.Compose(
|
| 26 |
+
[
|
| 27 |
+
# We first resize the input image to 256x256 and then we take center crop.
|
| 28 |
+
T.Resize(int((256 / 224) * extractor.size["height"])),
|
| 29 |
+
T.CenterCrop(extractor.size["height"]),
|
| 30 |
+
T.ToTensor(),
|
| 31 |
+
T.Normalize(mean=extractor.image_mean, std=extractor.image_std),
|
| 32 |
+
]
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Define random vectors to project with.
|
| 37 |
+
random_vectors = np.random.randn(hash_size, hidden_dim).T
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def hash_func(embedding, random_vectors=random_vectors):
|
| 41 |
+
"""Randomly projects the embeddings and then computes bit-wise hashes."""
|
| 42 |
+
if not isinstance(embedding, np.ndarray):
|
| 43 |
+
embedding = np.array(embedding)
|
| 44 |
+
if len(embedding.shape) < 2:
|
| 45 |
+
embedding = np.expand_dims(embedding, 0)
|
| 46 |
+
|
| 47 |
+
# Random projection.
|
| 48 |
+
bools = np.dot(embedding, random_vectors) > 0
|
| 49 |
+
return [bool2int(bool_vec) for bool_vec in bools]
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def bool2int(x):
|
| 53 |
+
y = 0
|
| 54 |
+
for i, j in enumerate(x):
|
| 55 |
+
if j:
|
| 56 |
+
y += 1 << i
|
| 57 |
+
return y
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def compute_hash(model: Union[torch.nn.Module, str]):
|
| 61 |
+
"""Computes hash on a given dataset."""
|
| 62 |
+
device = model.device
|
| 63 |
+
|
| 64 |
+
def pp(example_batch):
|
| 65 |
+
# Prepare the input images for the model.
|
| 66 |
+
image_batch = example_batch["image"]
|
| 67 |
+
image_batch_transformed = torch.stack(
|
| 68 |
+
[transformation_chain(image) for image in image_batch]
|
| 69 |
+
)
|
| 70 |
+
new_batch = {"pixel_values": image_batch_transformed.to(device)}
|
| 71 |
+
|
| 72 |
+
# Compute embeddings and pool them i.e., take the representations from the [CLS]
|
| 73 |
+
# token.
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
embeddings = model(**new_batch).last_hidden_state[:, 0].cpu().numpy()
|
| 76 |
+
|
| 77 |
+
# Compute hashes for the batch of images.
|
| 78 |
+
hashes = [hash_func(embeddings[i]) for i in range(len(embeddings))]
|
| 79 |
+
example_batch["hashes"] = hashes
|
| 80 |
+
return example_batch
|
| 81 |
+
|
| 82 |
+
return pp
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
class Table:
|
| 86 |
+
def __init__(self, hash_size: int):
|
| 87 |
+
self.table = {}
|
| 88 |
+
self.hash_size = hash_size
|
| 89 |
+
|
| 90 |
+
def add(self, id: int, hashes: List[int], label: int):
|
| 91 |
+
# Create a unique indentifier.
|
| 92 |
+
entry = {"id_label": str(id) + "_" + str(label)}
|
| 93 |
+
|
| 94 |
+
# Add the hash values to the current table.
|
| 95 |
+
for h in hashes:
|
| 96 |
+
if h in self.table:
|
| 97 |
+
self.table[h].append(entry)
|
| 98 |
+
else:
|
| 99 |
+
self.table[h] = [entry]
|
| 100 |
+
|
| 101 |
+
def query(self, hashes: List[int]):
|
| 102 |
+
results = []
|
| 103 |
+
|
| 104 |
+
# Loop over the query hashes and determine if they exist in
|
| 105 |
+
# the current table.
|
| 106 |
+
for h in hashes:
|
| 107 |
+
if h in self.table:
|
| 108 |
+
results.extend(self.table[h])
|
| 109 |
+
return results
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class LSH:
|
| 113 |
+
def __init__(self, hash_size, num_tables):
|
| 114 |
+
self.num_tables = num_tables
|
| 115 |
+
self.tables = []
|
| 116 |
+
for i in range(self.num_tables):
|
| 117 |
+
self.tables.append(Table(hash_size))
|
| 118 |
+
|
| 119 |
+
def add(self, id: int, hash: List[int], label: int):
|
| 120 |
+
for table in self.tables:
|
| 121 |
+
table.add(id, hash, label)
|
| 122 |
+
|
| 123 |
+
def query(self, hashes: List[int]):
|
| 124 |
+
results = []
|
| 125 |
+
for table in self.tables:
|
| 126 |
+
results.extend(table.query(hashes))
|
| 127 |
+
return results
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
class BuildLSHTable:
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
model: Union[torch.nn.Module, None],
|
| 134 |
+
batch_size: int = 48,
|
| 135 |
+
hash_size: int = hash_size,
|
| 136 |
+
dim: int = hidden_dim,
|
| 137 |
+
num_tables: int = 10,
|
| 138 |
+
):
|
| 139 |
+
self.hash_size = hash_size
|
| 140 |
+
self.dim = dim
|
| 141 |
+
self.num_tables = num_tables
|
| 142 |
+
self.lsh = LSH(self.hash_size, self.num_tables)
|
| 143 |
+
|
| 144 |
+
self.batch_size = batch_size
|
| 145 |
+
self.hash_fn = compute_hash(model.to(device))
|
| 146 |
+
|
| 147 |
+
def build(self, ds: datasets.DatasetDict):
|
| 148 |
+
dataset_hashed = ds.map(self.hash_fn, batched=True, batch_size=self.batch_size)
|
| 149 |
+
|
| 150 |
+
for id in tqdm(range(len(dataset_hashed))):
|
| 151 |
+
hash, label = dataset_hashed[id]["hashes"], dataset_hashed[id]["labels"]
|
| 152 |
+
self.lsh.add(id, hash, label)
|
| 153 |
+
|
| 154 |
+
def query(self, image, verbose=True):
|
| 155 |
+
if isinstance(image, str):
|
| 156 |
+
image = Image.open(image).convert("RGB")
|
| 157 |
+
|
| 158 |
+
# Compute the hashes of the query image and fetch the results.
|
| 159 |
+
example_batch = dict(image=[image])
|
| 160 |
+
hashes = self.hash_fn(example_batch)["hashes"][0]
|
| 161 |
+
|
| 162 |
+
results = self.lsh.query(hashes)
|
| 163 |
+
if verbose:
|
| 164 |
+
print("Matches:", len(results))
|
| 165 |
+
|
| 166 |
+
# Calculate Jaccard index to quantify the similarity.
|
| 167 |
+
counts = {}
|
| 168 |
+
for r in results:
|
| 169 |
+
if r["id_label"] in counts:
|
| 170 |
+
counts[r["id_label"]] += 1
|
| 171 |
+
else:
|
| 172 |
+
counts[r["id_label"]] = 1
|
| 173 |
+
for k in counts:
|
| 174 |
+
counts[k] = float(counts[k]) / self.dim
|
| 175 |
+
return counts
|