Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,12 +7,14 @@ import nltk
|
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
import re
|
|
|
|
| 10 |
|
| 11 |
# Initialize the English text classification pipeline for AI detection
|
| 12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 13 |
|
| 14 |
# Initialize the spell checker
|
| 15 |
spell = SpellChecker()
|
|
|
|
| 16 |
|
| 17 |
# Ensure necessary NLTK data is downloaded
|
| 18 |
nltk.download('wordnet')
|
|
@@ -35,7 +37,7 @@ def get_synonyms_nltk(word, pos):
|
|
| 35 |
synsets = wordnet.synsets(word, pos=pos)
|
| 36 |
if synsets:
|
| 37 |
lemmas = synsets[0].lemmas()
|
| 38 |
-
return [lemma.name() for lemma in lemmas]
|
| 39 |
return []
|
| 40 |
|
| 41 |
# Function to remove redundant and meaningless words
|
|
@@ -68,14 +70,14 @@ def correct_tense_errors(text):
|
|
| 68 |
doc = nlp(text)
|
| 69 |
corrected_text = []
|
| 70 |
for token in doc:
|
| 71 |
-
if token.pos_ == "VERB"
|
| 72 |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 73 |
corrected_text.append(lemma)
|
| 74 |
else:
|
| 75 |
corrected_text.append(token.text)
|
| 76 |
return ' '.join(corrected_text)
|
| 77 |
|
| 78 |
-
# Function to correct singular/plural errors
|
| 79 |
def correct_singular_plural_errors(text):
|
| 80 |
doc = nlp(text)
|
| 81 |
corrected_text = []
|
|
@@ -84,12 +86,12 @@ def correct_singular_plural_errors(text):
|
|
| 84 |
if token.pos_ == "NOUN":
|
| 85 |
if token.tag_ == "NN": # Singular noun
|
| 86 |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 87 |
-
corrected_text.append(token.lemma_
|
| 88 |
else:
|
| 89 |
corrected_text.append(token.text)
|
| 90 |
elif token.tag_ == "NNS": # Plural noun
|
| 91 |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 92 |
-
corrected_text.append(token.
|
| 93 |
else:
|
| 94 |
corrected_text.append(token.text)
|
| 95 |
else:
|
|
@@ -116,26 +118,23 @@ def correct_article_errors(text):
|
|
| 116 |
|
| 117 |
# Function to get the correct synonym while maintaining verb form
|
| 118 |
def replace_with_synonym(token):
|
| 119 |
-
pos =
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
elif token.pos_ == "ADV":
|
| 127 |
-
pos = wordnet.ADV
|
| 128 |
-
|
| 129 |
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 130 |
-
|
| 131 |
if synonyms:
|
| 132 |
synonym = synonyms[0]
|
| 133 |
-
if token.tag_ == "VBG": # Present participle
|
| 134 |
-
synonym
|
| 135 |
-
elif token.tag_
|
| 136 |
-
synonym
|
| 137 |
elif token.tag_ == "VBZ": # Third-person singular present
|
| 138 |
-
synonym
|
| 139 |
return synonym
|
| 140 |
return token.text
|
| 141 |
|
|
@@ -155,12 +154,12 @@ def ensure_subject_verb_agreement(text):
|
|
| 155 |
doc = nlp(text)
|
| 156 |
corrected_text = []
|
| 157 |
for token in doc:
|
|
|
|
| 158 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 159 |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
| 160 |
-
corrected_text
|
| 161 |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
| 162 |
-
corrected_text
|
| 163 |
-
corrected_text.append(token.text)
|
| 164 |
return ' '.join(corrected_text)
|
| 165 |
|
| 166 |
# Function to correct spelling errors
|
|
@@ -193,27 +192,24 @@ def rephrase_with_synonyms(text):
|
|
| 193 |
rephrased_text.append("Earth")
|
| 194 |
continue
|
| 195 |
|
| 196 |
-
pos_tag =
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
pos_tag = wordnet.ADJ
|
| 203 |
-
elif token.pos_ == "ADV":
|
| 204 |
-
pos_tag = wordnet.ADV
|
| 205 |
|
| 206 |
if pos_tag:
|
| 207 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 208 |
if synonyms:
|
| 209 |
synonym = synonyms[0] # Just using the first synonym for simplicity
|
| 210 |
if token.pos_ == "VERB":
|
| 211 |
-
if token.tag_ == "VBG": # Present participle
|
| 212 |
-
synonym
|
| 213 |
-
elif token.tag_
|
| 214 |
-
synonym
|
| 215 |
elif token.tag_ == "VBZ": # Third-person singular present
|
| 216 |
-
synonym
|
| 217 |
rephrased_text.append(synonym)
|
| 218 |
else:
|
| 219 |
rephrased_text.append(token.text)
|
|
@@ -234,37 +230,46 @@ def paraphrase_and_correct(text):
|
|
| 234 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 235 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
| 236 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 237 |
-
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 238 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 239 |
|
| 240 |
-
# Correct spelling
|
| 241 |
paraphrased_text = correct_spelling(paraphrased_text)
|
|
|
|
|
|
|
| 242 |
paraphrased_text = correct_punctuation(paraphrased_text)
|
| 243 |
-
paraphrased_text = handle_possessives(paraphrased_text) # Handle possessives
|
| 244 |
|
| 245 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
|
| 250 |
|
| 251 |
-
return
|
| 252 |
|
| 253 |
-
#
|
| 254 |
def process_text(input_text):
|
| 255 |
ai_label, ai_score = predict_en(input_text)
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
-
#
|
| 260 |
iface = gr.Interface(
|
| 261 |
fn=process_text,
|
| 262 |
-
inputs="text",
|
| 263 |
-
outputs=["
|
| 264 |
-
title="
|
| 265 |
-
description="
|
| 266 |
)
|
| 267 |
|
| 268 |
-
# Launch the
|
| 269 |
-
|
| 270 |
-
iface.launch()
|
|
|
|
| 7 |
from nltk.corpus import wordnet
|
| 8 |
from spellchecker import SpellChecker
|
| 9 |
import re
|
| 10 |
+
from inflect import engine # For pluralization
|
| 11 |
|
| 12 |
# Initialize the English text classification pipeline for AI detection
|
| 13 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 14 |
|
| 15 |
# Initialize the spell checker
|
| 16 |
spell = SpellChecker()
|
| 17 |
+
inflect_engine = engine()
|
| 18 |
|
| 19 |
# Ensure necessary NLTK data is downloaded
|
| 20 |
nltk.download('wordnet')
|
|
|
|
| 37 |
synsets = wordnet.synsets(word, pos=pos)
|
| 38 |
if synsets:
|
| 39 |
lemmas = synsets[0].lemmas()
|
| 40 |
+
return [lemma.name() for lemma in lemmas if lemma.name() != word] # Avoid original word
|
| 41 |
return []
|
| 42 |
|
| 43 |
# Function to remove redundant and meaningless words
|
|
|
|
| 70 |
doc = nlp(text)
|
| 71 |
corrected_text = []
|
| 72 |
for token in doc:
|
| 73 |
+
if token.pos_ == "VERB":
|
| 74 |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 75 |
corrected_text.append(lemma)
|
| 76 |
else:
|
| 77 |
corrected_text.append(token.text)
|
| 78 |
return ' '.join(corrected_text)
|
| 79 |
|
| 80 |
+
# Function to correct singular/plural errors using inflect
|
| 81 |
def correct_singular_plural_errors(text):
|
| 82 |
doc = nlp(text)
|
| 83 |
corrected_text = []
|
|
|
|
| 86 |
if token.pos_ == "NOUN":
|
| 87 |
if token.tag_ == "NN": # Singular noun
|
| 88 |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 89 |
+
corrected_text.append(inflect_engine.plural(token.lemma_))
|
| 90 |
else:
|
| 91 |
corrected_text.append(token.text)
|
| 92 |
elif token.tag_ == "NNS": # Plural noun
|
| 93 |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 94 |
+
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
|
| 95 |
else:
|
| 96 |
corrected_text.append(token.text)
|
| 97 |
else:
|
|
|
|
| 118 |
|
| 119 |
# Function to get the correct synonym while maintaining verb form
|
| 120 |
def replace_with_synonym(token):
|
| 121 |
+
pos = {
|
| 122 |
+
"VERB": wordnet.VERB,
|
| 123 |
+
"NOUN": wordnet.NOUN,
|
| 124 |
+
"ADJ": wordnet.ADJ,
|
| 125 |
+
"ADV": wordnet.ADV
|
| 126 |
+
}.get(token.pos_, None)
|
| 127 |
+
|
|
|
|
|
|
|
|
|
|
| 128 |
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 129 |
+
|
| 130 |
if synonyms:
|
| 131 |
synonym = synonyms[0]
|
| 132 |
+
if token.tag_ == "VBG": # Present participle
|
| 133 |
+
synonym += 'ing'
|
| 134 |
+
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle
|
| 135 |
+
synonym += 'ed'
|
| 136 |
elif token.tag_ == "VBZ": # Third-person singular present
|
| 137 |
+
synonym += 's'
|
| 138 |
return synonym
|
| 139 |
return token.text
|
| 140 |
|
|
|
|
| 154 |
doc = nlp(text)
|
| 155 |
corrected_text = []
|
| 156 |
for token in doc:
|
| 157 |
+
corrected_text.append(token.text)
|
| 158 |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 159 |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
| 160 |
+
corrected_text[-1] = token.head.lemma_ + "s"
|
| 161 |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
| 162 |
+
corrected_text[-1] = token.head.lemma_
|
|
|
|
| 163 |
return ' '.join(corrected_text)
|
| 164 |
|
| 165 |
# Function to correct spelling errors
|
|
|
|
| 192 |
rephrased_text.append("Earth")
|
| 193 |
continue
|
| 194 |
|
| 195 |
+
pos_tag = {
|
| 196 |
+
"NOUN": wordnet.NOUN,
|
| 197 |
+
"VERB": wordnet.VERB,
|
| 198 |
+
"ADJ": wordnet.ADJ,
|
| 199 |
+
"ADV": wordnet.ADV
|
| 200 |
+
}.get(token.pos_, None)
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
if pos_tag:
|
| 203 |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 204 |
if synonyms:
|
| 205 |
synonym = synonyms[0] # Just using the first synonym for simplicity
|
| 206 |
if token.pos_ == "VERB":
|
| 207 |
+
if token.tag_ == "VBG": # Present participle
|
| 208 |
+
synonym += 'ing'
|
| 209 |
+
elif token.tag_ in {"VBD", "VBN"}: # Past tense or past participle
|
| 210 |
+
synonym += 'ed'
|
| 211 |
elif token.tag_ == "VBZ": # Third-person singular present
|
| 212 |
+
synonym += 's'
|
| 213 |
rephrased_text.append(synonym)
|
| 214 |
else:
|
| 215 |
rephrased_text.append(token.text)
|
|
|
|
| 230 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 231 |
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
| 232 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
# Correct spelling errors
|
| 235 |
paraphrased_text = correct_spelling(paraphrased_text)
|
| 236 |
+
|
| 237 |
+
# Correct punctuation issues
|
| 238 |
paraphrased_text = correct_punctuation(paraphrased_text)
|
|
|
|
| 239 |
|
| 240 |
+
# Handle possessives
|
| 241 |
+
paraphrased_text = handle_possessives(paraphrased_text)
|
| 242 |
+
|
| 243 |
+
# Ensure subject-verb agreement
|
| 244 |
+
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 245 |
+
|
| 246 |
+
# Replace with synonyms
|
| 247 |
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 248 |
|
| 249 |
+
# Correct for double negatives
|
| 250 |
+
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 251 |
|
| 252 |
+
return paraphrased_text
|
| 253 |
|
| 254 |
+
# Function to handle the user interface
|
| 255 |
def process_text(input_text):
|
| 256 |
ai_label, ai_score = predict_en(input_text)
|
| 257 |
+
ai_result = f"AI Detected: {ai_label} (Score: {ai_score:.2f})"
|
| 258 |
+
|
| 259 |
+
if ai_label == "HUMAN":
|
| 260 |
+
corrected_text = paraphrase_and_correct(input_text)
|
| 261 |
+
return corrected_text, ai_result
|
| 262 |
+
else:
|
| 263 |
+
return "The text seems to be AI-generated; no correction applied.", ai_result
|
| 264 |
|
| 265 |
+
# Gradio interface
|
| 266 |
iface = gr.Interface(
|
| 267 |
fn=process_text,
|
| 268 |
+
inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."),
|
| 269 |
+
outputs=[gr.Textbox(label="Corrected Text"), gr.Textbox(label="AI Detection Result")],
|
| 270 |
+
title="Text Correction and AI Detection",
|
| 271 |
+
description="This app corrects grammar, spelling, and punctuation while also detecting AI-generated content."
|
| 272 |
)
|
| 273 |
|
| 274 |
+
# Launch the interface
|
| 275 |
+
iface.launch()
|
|
|