Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline
|
| 4 |
import spacy
|
|
@@ -18,6 +19,275 @@ spell = SpellChecker()
|
|
| 18 |
nltk.download('wordnet')
|
| 19 |
nltk.download('omw-1.4')
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Ensure the SpaCy model is installed
|
| 22 |
try:
|
| 23 |
nlp = spacy.load("en_core_web_sm")
|
|
|
|
| 1 |
import os
|
| 2 |
+
import gradio as grimport os
|
| 3 |
import gradio as gr
|
| 4 |
from transformers import pipeline
|
| 5 |
import spacy
|
|
|
|
| 19 |
nltk.download('wordnet')
|
| 20 |
nltk.download('omw-1.4')
|
| 21 |
|
| 22 |
+
# Ensure the SpaCy model is installed
|
| 23 |
+
try:
|
| 24 |
+
nlp = spacy.load("en_core_web_sm")
|
| 25 |
+
except OSError:
|
| 26 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
| 27 |
+
nlp = spacy.load("en_core_web_sm")
|
| 28 |
+
|
| 29 |
+
# Function to predict the label and score for English text (AI Detection)
|
| 30 |
+
def predict_en(text):
|
| 31 |
+
res = pipeline_en(text)[0]
|
| 32 |
+
return res['label'], res['score']
|
| 33 |
+
|
| 34 |
+
# Function to get synonyms using NLTK WordNet
|
| 35 |
+
def get_synonyms_nltk(word, pos):
|
| 36 |
+
synsets = wordnet.synsets(word, pos=pos)
|
| 37 |
+
if synsets:
|
| 38 |
+
lemmas = synsets[0].lemmas()
|
| 39 |
+
return [lemma.name() for lemma in lemmas]
|
| 40 |
+
return []
|
| 41 |
+
|
| 42 |
+
# Function to remove redundant and meaningless words
|
| 43 |
+
def remove_redundant_words(text):
|
| 44 |
+
doc = nlp(text)
|
| 45 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
| 46 |
+
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
| 47 |
+
return ' '.join(filtered_text)
|
| 48 |
+
|
| 49 |
+
# Function to capitalize the first letter of sentences and proper nouns
|
| 50 |
+
def capitalize_sentences_and_nouns(text):
|
| 51 |
+
doc = nlp(text)
|
| 52 |
+
corrected_text = []
|
| 53 |
+
|
| 54 |
+
for sent in doc.sents:
|
| 55 |
+
sentence = []
|
| 56 |
+
for token in sent:
|
| 57 |
+
if token.i == sent.start: # First word of the sentence
|
| 58 |
+
sentence.append(token.text.capitalize())
|
| 59 |
+
elif token.pos_ == "PROPN": # Proper noun
|
| 60 |
+
sentence.append(token.text.capitalize())
|
| 61 |
+
else:
|
| 62 |
+
sentence.append(token.text)
|
| 63 |
+
corrected_text.append(' '.join(sentence))
|
| 64 |
+
|
| 65 |
+
return ' '.join(corrected_text)
|
| 66 |
+
|
| 67 |
+
# Function to correct tense errors in a sentence
|
| 68 |
+
def correct_tense_errors(text):
|
| 69 |
+
doc = nlp(text)
|
| 70 |
+
corrected_text = []
|
| 71 |
+
for token in doc:
|
| 72 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
| 73 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
| 74 |
+
corrected_text.append(lemma)
|
| 75 |
+
else:
|
| 76 |
+
corrected_text.append(token.text)
|
| 77 |
+
return ' '.join(corrected_text)
|
| 78 |
+
|
| 79 |
+
# Function to correct singular/plural errors
|
| 80 |
+
def correct_singular_plural_errors(text):
|
| 81 |
+
doc = nlp(text)
|
| 82 |
+
corrected_text = []
|
| 83 |
+
|
| 84 |
+
for token in doc:
|
| 85 |
+
if token.pos_ == "NOUN":
|
| 86 |
+
if token.tag_ == "NN": # Singular noun
|
| 87 |
+
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
| 88 |
+
corrected_text.append(token.lemma_ + 's')
|
| 89 |
+
else:
|
| 90 |
+
corrected_text.append(token.text)
|
| 91 |
+
elif token.tag_ == "NNS": # Plural noun
|
| 92 |
+
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
| 93 |
+
corrected_text.append(token.lemma_)
|
| 94 |
+
else:
|
| 95 |
+
corrected_text.append(token.text)
|
| 96 |
+
else:
|
| 97 |
+
corrected_text.append(token.text)
|
| 98 |
+
|
| 99 |
+
return ' '.join(corrected_text)
|
| 100 |
+
|
| 101 |
+
# Function to check and correct article errors
|
| 102 |
+
def correct_article_errors(text):
|
| 103 |
+
doc = nlp(text)
|
| 104 |
+
corrected_text = []
|
| 105 |
+
for token in doc:
|
| 106 |
+
if token.text in ['a', 'an']:
|
| 107 |
+
next_token = token.nbor(1)
|
| 108 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
| 109 |
+
corrected_text.append("an")
|
| 110 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
| 111 |
+
corrected_text.append("a")
|
| 112 |
+
else:
|
| 113 |
+
corrected_text.append(token.text)
|
| 114 |
+
else:
|
| 115 |
+
corrected_text.append(token.text)
|
| 116 |
+
return ' '.join(corrected_text)
|
| 117 |
+
|
| 118 |
+
# Function to get the correct synonym while maintaining verb form
|
| 119 |
+
def replace_with_synonym(token):
|
| 120 |
+
pos = None
|
| 121 |
+
if token.pos_ == "VERB":
|
| 122 |
+
pos = wordnet.VERB
|
| 123 |
+
elif token.pos_ == "NOUN":
|
| 124 |
+
pos = wordnet.NOUN
|
| 125 |
+
elif token.pos_ == "ADJ":
|
| 126 |
+
pos = wordnet.ADJ
|
| 127 |
+
elif token.pos_ == "ADV":
|
| 128 |
+
pos = wordnet.ADV
|
| 129 |
+
|
| 130 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos)
|
| 131 |
+
|
| 132 |
+
if synonyms:
|
| 133 |
+
synonym = synonyms[0]
|
| 134 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 135 |
+
synonym = synonym + 'ing'
|
| 136 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 137 |
+
synonym = synonym + 'ed'
|
| 138 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 139 |
+
synonym = synonym + 's'
|
| 140 |
+
return synonym
|
| 141 |
+
return token.text
|
| 142 |
+
|
| 143 |
+
# Function to check for and avoid double negatives
|
| 144 |
+
def correct_double_negatives(text):
|
| 145 |
+
doc = nlp(text)
|
| 146 |
+
corrected_text = []
|
| 147 |
+
for token in doc:
|
| 148 |
+
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
|
| 149 |
+
corrected_text.append("always")
|
| 150 |
+
else:
|
| 151 |
+
corrected_text.append(token.text)
|
| 152 |
+
return ' '.join(corrected_text)
|
| 153 |
+
|
| 154 |
+
# Function to ensure subject-verb agreement
|
| 155 |
+
def ensure_subject_verb_agreement(text):
|
| 156 |
+
doc = nlp(text)
|
| 157 |
+
corrected_text = []
|
| 158 |
+
for token in doc:
|
| 159 |
+
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
| 160 |
+
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb
|
| 161 |
+
corrected_text.append(token.head.lemma_ + "s")
|
| 162 |
+
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb
|
| 163 |
+
corrected_text.append(token.head.lemma_)
|
| 164 |
+
corrected_text.append(token.text)
|
| 165 |
+
return ' '.join(corrected_text)
|
| 166 |
+
|
| 167 |
+
# Function to correct spelling errors
|
| 168 |
+
def correct_spelling(text):
|
| 169 |
+
words = text.split()
|
| 170 |
+
corrected_words = []
|
| 171 |
+
for word in words:
|
| 172 |
+
corrected_word = spell.correction(word)
|
| 173 |
+
corrected_words.append(corrected_word if corrected_word else word) # Keep original if correction is None
|
| 174 |
+
return ' '.join(corrected_words)
|
| 175 |
+
|
| 176 |
+
# Function to correct punctuation issues
|
| 177 |
+
def correct_punctuation(text):
|
| 178 |
+
text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove space before punctuation
|
| 179 |
+
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) # Ensure a single space after punctuation
|
| 180 |
+
return text
|
| 181 |
+
|
| 182 |
+
# Function to ensure correct handling of possessive forms
|
| 183 |
+
def handle_possessives(text):
|
| 184 |
+
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) # Preserve possessive forms
|
| 185 |
+
return text
|
| 186 |
+
|
| 187 |
+
# Function to rephrase text and replace words with their synonyms while maintaining form
|
| 188 |
+
def rephrase_with_synonyms(text):
|
| 189 |
+
doc = nlp(text)
|
| 190 |
+
rephrased_text = []
|
| 191 |
+
|
| 192 |
+
for token in doc:
|
| 193 |
+
if token.pos_ == "NOUN" and token.text.lower() == "earth":
|
| 194 |
+
rephrased_text.append("Earth")
|
| 195 |
+
continue
|
| 196 |
+
|
| 197 |
+
pos_tag = None
|
| 198 |
+
if token.pos_ == "NOUN":
|
| 199 |
+
pos_tag = wordnet.NOUN
|
| 200 |
+
elif token.pos_ == "VERB":
|
| 201 |
+
pos_tag = wordnet.VERB
|
| 202 |
+
elif token.pos_ == "ADJ":
|
| 203 |
+
pos_tag = wordnet.ADJ
|
| 204 |
+
elif token.pos_ == "ADV":
|
| 205 |
+
pos_tag = wordnet.ADV
|
| 206 |
+
|
| 207 |
+
if pos_tag:
|
| 208 |
+
synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
|
| 209 |
+
if synonyms:
|
| 210 |
+
synonym = synonyms[0] # Just using the first synonym for simplicity
|
| 211 |
+
if token.pos_ == "VERB":
|
| 212 |
+
if token.tag_ == "VBG": # Present participle (e.g., running)
|
| 213 |
+
synonym = synonym + 'ing'
|
| 214 |
+
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle
|
| 215 |
+
synonym = synonym + 'ed'
|
| 216 |
+
elif token.tag_ == "VBZ": # Third-person singular present
|
| 217 |
+
synonym = synonym + 's'
|
| 218 |
+
rephrased_text.append(synonym)
|
| 219 |
+
else:
|
| 220 |
+
rephrased_text.append(token.text)
|
| 221 |
+
else:
|
| 222 |
+
rephrased_text.append(token.text)
|
| 223 |
+
|
| 224 |
+
return ' '.join(rephrased_text)
|
| 225 |
+
|
| 226 |
+
# Function to paraphrase and correct grammar with enhanced accuracy
|
| 227 |
+
def paraphrase_and_correct(text):
|
| 228 |
+
# Remove meaningless or redundant words first
|
| 229 |
+
cleaned_text = remove_redundant_words(text)
|
| 230 |
+
|
| 231 |
+
# Capitalize sentences and nouns
|
| 232 |
+
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
| 233 |
+
|
| 234 |
+
# Correct tense and singular/plural errors
|
| 235 |
+
paraphrased_text = correct_tense_errors(paraphrased_text)
|
| 236 |
+
paraphrased_text = correct_singular_plural_errors(paraphrased_text)
|
| 237 |
+
paraphrased_text = correct_article_errors(paraphrased_text)
|
| 238 |
+
paraphrased_text = correct_double_negatives(paraphrased_text)
|
| 239 |
+
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
| 240 |
+
|
| 241 |
+
# Correct spelling and punctuation
|
| 242 |
+
paraphrased_text = correct_spelling(paraphrased_text)
|
| 243 |
+
paraphrased_text = correct_punctuation(paraphrased_text)
|
| 244 |
+
paraphrased_text = handle_possessives(paraphrased_text) # Handle possessives
|
| 245 |
+
|
| 246 |
+
# Rephrase with synonyms
|
| 247 |
+
paraphrased_text = rephrase_with_synonyms(paraphrased_text)
|
| 248 |
+
|
| 249 |
+
# Force capitalization of the first letter of each sentence
|
| 250 |
+
final_text = force_first_letter_capital(paraphrased_text)
|
| 251 |
+
|
| 252 |
+
return final_text
|
| 253 |
+
|
| 254 |
+
# Gradio Interface
|
| 255 |
+
def process_text(input_text):
|
| 256 |
+
ai_label, ai_score = predict_en(input_text)
|
| 257 |
+
corrected_text = paraphrase_and_correct(input_text)
|
| 258 |
+
return ai_label, ai_score, corrected_text
|
| 259 |
+
|
| 260 |
+
# Create Gradio interface
|
| 261 |
+
iface = gr.Interface(
|
| 262 |
+
fn=process_text,
|
| 263 |
+
inputs="text",
|
| 264 |
+
outputs=["text", "number", "text"],
|
| 265 |
+
title="AI Content Detection and Grammar Correction",
|
| 266 |
+
description="Enter text to detect AI-generated content and correct grammar."
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
# Launch the Gradio app
|
| 270 |
+
if __name__ == "__main__":
|
| 271 |
+
iface.launch()
|
| 272 |
+
|
| 273 |
+
from transformers import pipeline
|
| 274 |
+
import spacy
|
| 275 |
+
import subprocess
|
| 276 |
+
import nltk
|
| 277 |
+
from nltk.corpus import wordnet
|
| 278 |
+
from spellchecker import SpellChecker
|
| 279 |
+
import re
|
| 280 |
+
|
| 281 |
+
# Initialize the English text classification pipeline for AI detection
|
| 282 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
| 283 |
+
|
| 284 |
+
# Initialize the spell checker
|
| 285 |
+
spell = SpellChecker()
|
| 286 |
+
|
| 287 |
+
# Ensure necessary NLTK data is downloaded
|
| 288 |
+
nltk.download('wordnet')
|
| 289 |
+
nltk.download('omw-1.4')
|
| 290 |
+
|
| 291 |
# Ensure the SpaCy model is installed
|
| 292 |
try:
|
| 293 |
nlp = spacy.load("en_core_web_sm")
|