Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| from transformers import pipeline | |
| import spacy | |
| import nltk | |
| from nltk.corpus import wordnet | |
| from spellchecker import SpellChecker | |
| import re | |
| import inflect | |
| # Initialize components | |
| try: | |
| nlp = spacy.load("en_core_web_sm") | |
| except OSError: | |
| print("Downloading spaCy model...") | |
| spacy.cli.download("en_core_web_sm") | |
| nlp = spacy.load("en_core_web_sm") | |
| # Initialize the spell checker | |
| spell = SpellChecker() | |
| # Initialize the inflect engine for pluralization | |
| inflect_engine = inflect.engine() | |
| # Ensure necessary NLTK data is downloaded | |
| nltk.download('wordnet', quiet=True) | |
| nltk.download('omw-1.4', quiet=True) | |
| # Function to remove redundant/filler words | |
| def remove_redundant_words(text): | |
| doc = nlp(text) | |
| meaningless_words = {"actually", "basically", "literally", "really", "very", "just", "quite", "rather", "simply", | |
| "that", "kind of", "sort of", "you know", "honestly", "seriously"} | |
| filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
| return ' '.join(filtered_text) | |
| # Function to capitalize sentences and proper nouns | |
| def capitalize_sentences_and_nouns(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for sent in doc.sents: | |
| sentence = [] | |
| for token in sent: | |
| if token.i == sent.start or token.pos_ == "PROPN": | |
| sentence.append(token.text.capitalize()) | |
| else: | |
| sentence.append(token.text.lower()) | |
| corrected_text.append(' '.join(sentence)) | |
| return ' '.join(corrected_text) | |
| # Function to correct verb tenses | |
| def correct_tense_errors(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for token in doc: | |
| if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
| lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
| corrected_text.append(lemma) | |
| else: | |
| corrected_text.append(token.text) | |
| return ' '.join(corrected_text) | |
| # Function to ensure subject-verb agreement | |
| def ensure_subject_verb_agreement(text): | |
| doc = nlp(text) | |
| corrected_text = [] | |
| for token in doc: | |
| if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
| if token.tag_ == "NN" and token.head.tag_ != "VBZ": | |
| corrected_text.append(token.head.lemma_ + "s") | |
| elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": | |
| corrected_text.append(token.head.lemma_) | |
| else: | |
| corrected_text.append(token.head.text) | |
| else: | |
| corrected_text.append(token.text) | |
| return ' '.join(corrected_text) | |
| # Function to correct apostrophe usage | |
| def correct_apostrophes(text): | |
| text = re.sub(r"\b(\w+)s\b(?<!\'s)", r"\1's", text) # Simple apostrophe correction | |
| text = re.sub(r"\b(\w+)s'\b", r"\1s'", text) # Handles plural possessives | |
| return text | |
| # Function to enhance punctuation usage | |
| def enhance_punctuation(text): | |
| text = re.sub(r'\s+([?.!,";:])', r'\1', text) # Remove extra space before punctuation | |
| text = re.sub(r'([?.!,";:])(\S)', r'\1 \2', text) # Add space after punctuation if needed | |
| text = re.sub(r'\s*"\s*', '" ', text).strip() # Clean up spaces around quotes | |
| text = re.sub(r'([.!?])\s*([a-z])', lambda m: m.group(1) + ' ' + m.group(2).upper(), text) | |
| text = re.sub(r'([a-z])\s+([A-Z])', r'\1. \2', text) # Ensure sentences start with capitalized words | |
| return text | |
| # Function to correct semantic errors and replace with more appropriate words | |
| def correct_semantic_errors(text): | |
| semantic_corrections = { | |
| "animate_being": "animal", | |
| "little": "smallest", | |
| "big": "largest", | |
| "mammalian": "mammals", | |
| "universe": "world", | |
| "manner": "ways", | |
| "continue": "preserve", | |
| "dirt": "soil", | |
| "wellness": "health", | |
| "modulate": "regulate", | |
| "clime": "climate", | |
| "function": "role", | |
| "keeping": "maintaining", | |
| "lend": "contribute", | |
| "better": "improve", | |
| "cardinal": "key", | |
| "expeditiously": "efficiently", | |
| "marauder": "predator", | |
| "quarry": "prey", | |
| "forestalling": "preventing", | |
| "bend": "turn", | |
| "works": "plant", | |
| "croping": "grazing", | |
| "flora": "vegetation", | |
| "dynamical": "dynamic", | |
| "alteration": "change", | |
| "add-on": "addition", | |
| "indispensable": "essential", | |
| "nutrient": "food", | |
| "harvest": "crops", | |
| "pollenateing": "pollinating", | |
| "divers": "diverse", | |
| "beginning": "source", | |
| "homo": "humans", | |
| "fall_in": "collapse", | |
| "takeing": "leading", | |
| "coinage": "species", | |
| "trust": "rely", | |
| "angleworm": "earthworm", | |
| "interrupt": "break", | |
| "affair": "matter", | |
| "air_out": "aerate", | |
| "alimentary": "nutrient", | |
| "distributeed": "spread", | |
| "country": "areas", | |
| "reconstruct": "restore", | |
| "debauched": "degraded", | |
| "giant": "whales", | |
| "organic_structure": "bodies", | |
| "decease": "die", | |
| "carcase": "carcasses", | |
| "pin_downing": "trapping", | |
| "cut_downs": "reduces", | |
| "ambiance": "atmosphere", | |
| "extenuateing": "mitigating", | |
| "decision": "conclusion", | |
| "doing": "making", | |
| "prolongs": "sustains", | |
| "home_ground": "habitats", | |
| "continueing": "preserving", | |
| "populateing": "living", | |
| "beingness": "beings" | |
| } | |
| words = text.split() | |
| corrected_words = [semantic_corrections.get(word.lower(), word) for word in words] | |
| return ' '.join(corrected_words) | |
| # Function to rephrase using synonyms and adjust verb forms | |
| def rephrase_with_synonyms(text): | |
| doc = nlp(text) | |
| rephrased_text = [] | |
| for token in doc: | |
| pos_tag = None | |
| if token.pos_ in ["NOUN", "VERB", "ADJ", "ADV"]: | |
| pos_tag = getattr(wordnet, token.pos_) | |
| if pos_tag: | |
| synonyms = get_synonyms_nltk(token.lemma_, pos_tag) | |
| if synonyms: | |
| synonym = synonyms[0] | |
| if token.pos_ == "VERB": | |
| if token.tag_ == "VBG": | |
| synonym = synonym + 'ing' | |
| elif token.tag_ in ["VBD", "VBN"]: | |
| synonym = synonym + 'ed' | |
| elif token.tag_ == "VBZ": | |
| synonym = synonym + 's' | |
| rephrased_text.append(synonym) | |
| else: | |
| rephrased_text.append(token.text) | |
| else: | |
| rephrased_text.append(token.text) | |
| return ' '.join(rephrased_text) | |
| # Function to apply enhanced spell check | |
| def enhanced_spell_check(text): | |
| words = text.split() | |
| corrected_words = [] | |
| for word in words: | |
| if '_' in word: | |
| sub_words = word.split('_') | |
| corrected_sub_words = [spell.correction(w) or w for w in sub_words] | |
| corrected_words.append('_'.join(corrected_sub_words)) | |
| else: | |
| corrected_word = spell.correction(word) or word | |
| corrected_words.append(corrected_word) | |
| return ' '.join(corrected_words) | |
| # Comprehensive function to correct the entire text | |
| def paraphrase_and_correct(text): | |
| text = enhanced_spell_check(text) | |
| text = remove_redundant_words(text) | |
| text = capitalize_sentences_and_nouns(text) | |
| text = correct_tense_errors(text) | |
| text = ensure_subject_verb_agreement(text) | |
| text = enhance_punctuation(text) | |
| text = correct_apostrophes(text) | |
| text = correct_semantic_errors(text) | |
| text = rephrase_with_synonyms(text) | |
| return text | |
| # Gradio interface function | |
| def gradio_interface(text): | |
| corrected_text = paraphrase_and_correct(text) | |
| return corrected_text | |
| # Setting up Gradio interface | |
| iface = gr.Interface( | |
| fn=gradio_interface, | |
| inputs=gr.Textbox(lines=5, placeholder="Enter text here..."), | |
| outputs=[gr.Textbox(label="Corrected Text")], | |
| title="Grammar & Semantic Error Correction", | |
| ) | |
| # Run the Gradio interface | |
| if __name__ == "__main__": | |
| iface.launch() | |